RESULTS: In this study, the alignment analysis based on structural similarity allows the prediction of 48 potential interactions between 27 human RPs and the EBV proteins EBNA1, LMP1, LMP2A, and LMP2B. Gene ontology analysis of the putative protein-protein interactions (PPIs) reveals their probable involvement in RNA binding, ribosome biogenesis, metabolic and biosynthetic processes, and gene regulation. Pathway analysis shows their possible participation in viral infection strategies (viral translation), as well as oncogenesis (Wnt and EGFR signalling pathways). Finally, our molecular docking assay predicts the functional interactions of EBNA1 with four RPs individually: EBNA1-eS10, EBNA1-eS25, EBNA1-uL10 and EBNA1-uL11.
CONCLUSION: These interactions have never been revealed previously via either experimental or in silico approach. We envisage that the calculated interactions between the ribosomal and EBV proteins herein would provide a hypothetical model for future experimental studies on the functional relationship between ribosomal proteins and EBV infection.
METHODS: Fifty digital models were scanned from the same plaster models. Arch and tooth size measurements were made by 2 operators, twice. Calibration was done on 10 sets of models and checked using the Pearson correlation coefficient. Data were analyzed by error variances, repeatability coefficient, repeated-measures analysis of variance, and Bland-Altman plots.
RESULTS: Error variances ranged between 0.001 and 0.044 mm for the digital caliper method, and between 0.002 and 0.054 mm for the 3D software method. Repeated-measures analysis of variance showed small but statistically significant differences (P <0.05) between the repeated measurements in the arch and buccolingual planes (0.011 and 0.008 mm, respectively). There were no statistically significant differences between methods and between operators. Bland-Altman plots showed that the mean biases were close to zero, and the 95% limits of agreement were within ±0.50 mm. Repeatability coefficients for all measurements were similar.
CONCLUSIONS: Measurements made on models scanned by the 3D structured-light scanner were in good agreement with those made on conventional plaster models and were, therefore, clinically acceptable.
HIGHLIGHTS: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.
METHODS: A 2D model in the axisymmetric coordinates was developed to simulate the electro-thermophysiological responses of the tissue during a single probe bipolar RFA. Two different probe configurations were considered, namely the configuration where the active electrode is longer than the ground and the configuration where the ground electrode is longer than the active. The mathematical model was first verified with an existing experimental study found in the literature.
RESULTS: Results from the simulations showed that heating is confined only to the region around the shorter electrode, regardless of whether the shorter electrode is the active or the ground. Consequently, thermal coagulation also occurs in the region surrounding the shorter electrode. This opened up the possibility for a better customized treatment through the development of RF probes with adjustable electrode lengths.
CONCLUSIONS: The electrode length was found to play a significant role on the outcome of single probe bipolar RFA. In particular, the length of the shorter electrode becomes the limiting factor that influences the mechanics of single probe bipolar RFA. Results from this study can be used to further develop and optimize bipolar RFA as an effective and reliable cancer treatment technique.