Displaying publications 241 - 260 of 705 in total

Abstract:
Sort:
  1. Wong SK, Chin KY, Ima-Nirwana S
    Int J Med Sci, 2020;17(11):1625-1638.
    PMID: 32669965 DOI: 10.7150/ijms.47103
    Oxidative stress and inflammation are two interlinked events that exist simultaneously in metabolic syndrome (MetS) and its related complications. These pathophysiological processes can be easily triggered by each other. This review summarizes the current evidence from animal and human studies on the effects of vitamin C in managing MetS. In vivo studies showed promising effects of vitamin C, but most of the interventions used were in combination with other compounds. The direct effects of vitamin C remain to be elucidated. In humans, the current state of evidence revealed that lower vitamin C intake and circulating concentration were found in MetS subjects. A negative relationship was observed between vitamin C intake / concentration and the risk of MetS. Oral supplementation of vitamin C also improved MetS conditions. It has been postulated that the positive outcomes of vitamin C may be in part mediated through its anti-oxidative and anti-inflammatory properties. These observations suggest the importance of MetS patients to have an adequate intake of vitamin C through food, beverages or supplements in order to maintain its concentration in the systemic circulation and potentially reverse MetS.
    Matched MeSH terms: Inflammation/drug therapy
  2. Tham CL, Yeoh SY, Ong CH, Harith HH, Israf DA
    Mediators Inflamm, 2021;2021:9725903.
    PMID: 33883974 DOI: 10.1155/2021/9725903
    2,6-Bis-(4-hydroxyl-3-methoxybenzylidine) cyclohexanone (BHMC), a synthetic curcuminoid analogue, has been shown to exhibit anti-inflammatory properties in cellular models of inflammation and improve the survival of mice from lethal sepsis. We further evaluated the therapeutic effect of BHMC on acute airway inflammation in a mouse model of allergic asthma. Mice were sensitized and challenged with ovalbumin (OVA), followed by intraperitoneal administration of 0.1, 1, and 10 mg/kg of BHMC. Bronchoalveolar lavage fluid, blood, and lung samples were collected, and the respiratory function was measured. OVA sensitization and challenge increased airway hyperresponsiveness (AHR) and pulmonary inflammation. All three doses of BHMC (0.1-10 mg/kg) significantly reduced the number of eosinophils, lymphocytes, macrophages, and neutrophils, as well as the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) as compared to OVA-challenged mice. However, serum level of IgE was not affected. All three doses of BHMC (0.1-10 mg/kg) were effective in suppressing the infiltration of inflammatory cells at the peribronchial and perivascular regions, with the greatest effect observed at 1 mg/kg which was comparable to dexamethasone. Goblet cell hyperplasia was inhibited by 1 and 10 mg/kg of BHMC, while the lowest dose (0.1 mg/kg) had no significant inhibitory effect. These findings demonstrate that BHMC, a synthetic nonsteroidal small molecule, ameliorates acute airway inflammation associated with allergic asthma, primarily by suppressing the release of inflammatory mediators and goblet cell hyperplasia to a lesser extent in acute airway inflammation of allergic asthma.
    Matched MeSH terms: Inflammation; Inflammation Mediators
  3. Elsayed EA, El Enshasy H, Wadaan MA, Aziz R
    Mediators Inflamm, 2014;2014:805841.
    PMID: 25505823 DOI: 10.1155/2014/805841
    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.
    Matched MeSH terms: Inflammation/drug therapy*
  4. Tambuwala MM, Kesharwani P, Shukla R, Thompson PD, McCarron PA
    Pathol Res Pract, 2018 Nov;214(11):1909-1911.
    PMID: 30170869 DOI: 10.1016/j.prp.2018.08.020
    Fibrosis is known to be the hallmarks of chronic inflammation of the bowel. Epithelial damage due to inflammation compromises the barrier function of the gastrointestinal tract. This barrier dysfunction leads to further spread of inflammation resulting in a chronic state of inflammation. This chronic inflammation leads to development of fibrosis, which has very limited therapeutic options and usually requires surgical removal of the affected tissue. Our previous work has shown that Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, has been found to be protective in experimental colitis via enhancement of epithelial barrier function. However, the impact of CAPE on resolution of fibrosis in the long-term is unknown. The aim of this follow up study was to investigate the effect of CAPE on colon fibrosis in a chronic model of Dextran sulphate sodium induced colitis in mice. Dextran sulphate sodium (DSS) 2.5% w/v was administered in drinking water to induce colitis in C57/BL6 mice for 5 days on the 6th day DSS was stopped and test group mice were treated with intraperitoneal administration of CAPE (30 mg kg-1 day-1) for a further 7 days. Disease activity index (DAI) score, colon length and tissue histology and level of tissue fibrosis was observed. CAPE-treated mice had significantly lower levels of DAI, tissue inflammation scores and fibrosis as compared with control group. Our results show that CAPE is effective in resolving colon fibrosis in chronic inflammation. Thus, we can conclude CAPE could be a potential therapeutic agent for further clinical investigations for treatment of fibrosis in inflammatory bowel diseases in humans.
    Matched MeSH terms: Inflammation/pathology*
  5. Tew XN, Xin Lau NJ, Chellappan DK, Madheswaran T, Zeeshan F, Tambuwala MM, et al.
    Chem Biol Interact, 2020 Feb 01;317:108947.
    PMID: 31968208 DOI: 10.1016/j.cbi.2020.108947
    Inflammatory responses play a remarkable role in the mechanisms of acute and chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and lung cancer. Currently, there is a resurgence in the use of drugs from natural sources for various ailments as potent therapeutics. Berberine, an alkaloid prominent in the Chinese traditional system of medicine has been reported to exert therapeutic properties in various diseases. Nevertheless, the number of studies focusing on the curative potential of berberine in inflammatory diseases involving the respiratory system is limited. In this review, we have attempted to discuss the reported anti-inflammatory properties of berberine that function through several pathways such as, the NF-κB, ERK1/2 and p38 MAPK pathways which affect several pro-inflammatory cytokines in the pathophysiological processes involved in chronic respiratory diseases. This review would serve to provide valuable information to researchers who work in this field and a new direction in the field of drug discovery with respect to respiratory diseases.
    Matched MeSH terms: Inflammation/drug therapy*
  6. Özkaya D, Nazıroğlu M, Vanyorek L, Muhamad S
    Biol Trace Elem Res, 2021 Apr;199(4):1356-1369.
    PMID: 33389617 DOI: 10.1007/s12011-020-02556-3
    Hypoxia (HYPX) in several eye diseases such as glaucoma and diabetic retinopathy causes oxidative cell death and inflammation. TRPM2 cation channel is activated by HYPX-induced ADP-ribose (ADPR) and oxidative stress. The protective role of selenium via inhibition of TRPM2 on the HYPX-induced oxidative cytotoxicity and inflammation values in the human kidney cell line was recently reported. However, the protective role of selenium nanoparticles (SeNP) on the values in the retinal pigment epithelial (ARPE-19) cells has not been clarified yet. In the current study, we investigated two subjects. First, we investigated the involvement of TRPM2 channel on the HYPX-induced oxidative injury, inflammation, and apoptosis in the ARPE-19 cells. Second, we investigated the protective role of SeNP via inhibition of TRPM2 channel on the HYPX-induced oxidative injury and apoptosis in the ARPE-19 cells. For the aims, the ARPE-19 cells were divided into four main groups as follows: Control (Ctr), SeNP (2.5 μg/ml for 24 h), HYPX (200 μM CoCl2 for 24 h), and HYPX+SeNP. The TRPM2 current density and Ca2+ fluorescence intensity with an increase of mitochondrial membrane depolarization and oxygen free radical (OFR) generations were increased in the ARPE-19 cells by the treatment of HYPX. There was no increase of Ca2+ fluorescence intensity in the pre-treated cells with PARP-1 inhibitors (DPQ and PJ34) or in the presence of Ca2+-free extracellular buffer. When HYPX-induced TRPM2 activity was treated by SeNP and TRPM2 (2-APB and ACA) blockers, the increases of OFR generation, cytokine (TNF-α and IL-1β) levels, TRPM2, and PARP-1 expressions were restored. In conclusion, the exposure of HYPX caused mitochondrial oxidative cell cytotoxicity and cell death via TRPM2-mediated Ca2+ signaling and may provide an avenue for treating HYPX-induced retinal diseases associated with the excessive OFR and Ca2+ influx.
    Matched MeSH terms: Inflammation/chemically induced
  7. Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, et al.
    Chem Biol Interact, 2021 Aug 25;345:109568.
    PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568
    Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
    Matched MeSH terms: Inflammation/complications
  8. Ilori NTO, Liew CX, Fang CM
    Mol Biol Rep, 2020 Dec;47(12):9883-9894.
    PMID: 33244664 DOI: 10.1007/s11033-020-06025-x
    This appraisal is comprised of the inflammatory studies that have been conducted on Clinacanthus nutans, Acanthus ebracteatus, and Barleria lupulina. The review aims to provide a comprehensive evaluation of the supporting and contradictory evidence on each plants' anti-inflammatory properties, whilst addressing the gaps in the current literature. The databases used to obtain relevant studies were Google Scholar, ResearchGate, PubMed and Nusearch (University of Nottingham). A total of 13 articles were selected for this review. A. ebracteatus was found to suppress neutrophil migration and weakly inhibits chronic inflammatory cytokines. Furthermore, B. lupulina and C. nutans were shown to possess very similar anti-inflammatory properties. The studies on C. nutans indicated that its anti-inflammatory effect is strongly related to the inhibition of toll-like receptor 4 (TLR4). Moreover, several phytoconstituents isolated from B. lupulina were shown to activate the anti-inflammatory Nrf2 pathway. Overall, all the studies have provided evidence to support the use of these plants as anti-inflammatory herbal remedies. However, their exact mechanism of action and the responsible phytoconstituents are yet to be established.
    Matched MeSH terms: Inflammation/drug therapy*
  9. Rehman K, Aluwi MF, Rullah K, Wai LK, Mohd Amin MC, Zulfakar MH
    Int J Pharm, 2015 Jul 25;490(1-2):131-41.
    PMID: 26003416 DOI: 10.1016/j.ijpharm.2015.05.045
    Imiquimod is a chemotherapeutic agent for many skin-associated diseases, but it has also been associated with inflammatory side effects. The aim of this study was to prevent the inflammatory effect of commercial imiquimod (Aldara(®)) by controlled release of imiquimod through a hydrogel/oleogel colloidal mixture (CA bigel) containing fish oil as an anti-inflammatory agent. Imiquimod permeability from Aldara® cream and bigel through mice skin was evaluated, and the drug content residing in the skin via the tape stripping technique was quantified. The fish oil fatty acid content in skin along with its lipophilic environment was also determined. An inflammation study was conducted using animal models, and Aldara(®) cream was found to potentially cause psoriasis-like inflammation, which could be owing to prolonged application and excessive drug permeation. Controlled release of imiquimod along with fish oil through CA bigel may have caused reduced imiquimod inflammation. NMR studies and computerized molecular modeling were also conducted to observe whether the fish oil and imiquimod formed a complex that was responsible for improving imiquimod transport and reducing its side effects. NMR spectra showed dose-dependent chemical shifts and molecular modeling revealed π-σ interaction between EPA and imiquimod, which could help reduce imiquimod inflammation.
    Matched MeSH terms: Inflammation/drug therapy
  10. Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B
    Physiol Res, 2017 09 22;66(4):553-565.
    PMID: 28406691
    Alzheimer's disease (AD) is a primary cause of dementia in the middle-aged and elderly worldwide. Animal models for AD are widely used to study the disease mechanisms as well as to test potential therapeutic agents for disease modification. Among the non-genetically manipulated neuroinflammation models for AD, lipopolysaccharide (LPS)-induced animal model is commonly used. This review paper aims to discuss the possible factors that influence rats' response following LPS injection. Factors such as dose of LPS, route of administration, nature and duration of exposure as well as age and gender of animal used should be taken into account when designing a study using LPS-induced memory impairment as model for AD.
    Matched MeSH terms: Inflammation Mediators/metabolism
  11. Rajandram R, Yap NY, Ong TA, Mun KS, Mohamad Wali HA, Hasan MS, et al.
    Malays J Pathol, 2017 Apr;39(1):47-53.
    PMID: 28413205 MyJurnal
    INTRODUCTION: In recent years, prolonged ketamine abuse has been reported to cause urinary tract damage. However, there is little information on the pathological effects of ketamine from oral administration. We aimed to study the effects of oral ketamine on the urinary tract and the reversibility of these changes after cessation of ketamine intake.

    METHODS: Rats were fed with illicit (a concoction of street ketamine) ketamine in doses of 100 (N=12), or 300 mg/kg (N=12) for four weeks. Half of the rats were sacrificed after the 4-week feeding for necropsy. The remaining rats were taken off ketamine for 8 weeks to allow for any potential recovery of pathological changes before being sacrificed for necropsy. Histopathological examination was performed on the kidney and urinary bladder.

    RESULTS: Submucosal bladder inflammation was seen in 67% of the rats fed with 300 mg/kg illicit ketamine. No bladder inflammation was observed in the control and 100 mg/kg illicit ketamine groups. Renal changes, such as interstitial nephritis and papillary necrosis, were observed in rats given illicit ketamine. After ketamine cessation, no inflammation was observed in the bladder of all rats. However, renal inflammation remained in 60% of the rats given illicit ketamine. No dose-effect relationship was established between oral ketamine and changes in the kidneys.

    CONCLUSION: Oral ketamine caused pathological changes in the urinary tract, similar to that described in exposure to parenteral ketamine. The changes in the urinary bladder were reversible after short-term exposure.

    Matched MeSH terms: Inflammation/chemically induced*
  12. Dar MJ, Ali H, Khan A, Khan GM
    J Drug Target, 2017 Aug;25(7):582-596.
    PMID: 28277824 DOI: 10.1080/1061186X.2017.1298601
    Colon-specific drug delivery has found important applications in the wide array of diseases affecting the lower intestinal tract. Recent developments and advancements in the polymer-based colonic delivery ensure targeted therapeutics with reduced systemic adverse effects. Latest progress in the understanding of polymer science has decorated a polymer-based formulation with a number of special features, which may prove effective in the localized drug targeting at specific sites of the intestine. Upon oral administration, polymeric vehicles or polymer-coated formulations serve to protect the drug from premature release and degradation in the upper gastrointestinal tract. Moreover, it also facilitates the selective accumulation and controlled release of the drug at inflamed sites of the colon. This review article focuses on a wide coverage of major polymers, their modifications, pros and cons, mechanism of colon targeting and applications as a vehicle system for colonic drug delivery, with a special emphasis on the inflammatory bowel disease.
    Matched MeSH terms: Inflammation/drug therapy*
  13. Wickramatilake CM, Mohideen MR, Pathirana C
    Indian Heart J, 2017 02 12;69(2):291.
    PMID: 28460787 DOI: 10.1016/j.ihj.2017.02.002
    Matched MeSH terms: Inflammation/blood*
  14. Che Ahmad Tantowi NA, Lau SF, Mohamed S
    Calcif. Tissue Int., 2018 10;103(4):388-399.
    PMID: 29808374 DOI: 10.1007/s00223-018-0433-1
    Osteoporosis (OP) and osteoarthritis (OA) are debilitating musculoskeletal diseases of the elderly. Ficus deltoidea (FD) or mistletoe fig, a medicinal plant, was pre-clinically evaluated against OP- and OA-related bone alterations, in postmenopausal OA rat model. Thirty twelfth-week-old female rats were divided into groups (n = 6). Four groups were bilateral ovariectomized (OVX) and OA-induced by intra-articular monosodium iodoacetate (MIA) injection into the right knee joints. The Sham control and OVX-OA non-treated groups were given deionized water. The three other OVX-OA groups were orally administered daily with FD extract (200, 400 mg/kg) or diclofenac (5 mg/kg) for 4 weeks. The rats' bones and blood were evaluated for protein and mRNA expressions of osteoporosis and inflammatory indicators, and micro-CT computed tomography for bone microstructure. The non-treated OVX-OA rats developed severe OP bone loss and bone microstructural damage in the subchondral and metaphyseal regions, supported by reduced serum bone formation markers (osteocalcin, osteoprotegerin) and increased bone resorption markers (RANKL and CTX-I). The FD extract significantly (p 
    Matched MeSH terms: Inflammation/pathology*
  15. Thomas RJ, Eg KP, Masters IB, McElrea M, Chang AB
    Pediatr Pulmonol, 2018 11;53(11):1510-1516.
    PMID: 30238646 DOI: 10.1002/ppul.24163
    BACKGROUND: A valid bronchoscopic scoring tool for bronchitis would be useful for clinical and research purposes as currently there are none in children. From 100 digitally recorded flexible bronchoscopies (FB), we related the various macroscopic features to airway neutrophil % to develop a FB-derived bronchitis score (BScoreexp ). We aimed to develop a FB-derived bronchitis tool.

    METHODS: FB recordings for six visualised features: secretions (amount and color) and mucosal appearance (erythema, pallor, ridging, oedema) based on pre-determined criteria on a pictorial chart were assessed by two physicians independently, blinded to the clinical history. These features were used to obtain various models of BScoreexp that were plotted against bronchoalveolar lavage (BAL) neutrophil % using a receiver operating characteristic (ROC) curve. Inter- and intra-rater agreement (weighted-kappa, K) were assessed from 30 FBs.

    RESULTS: Using BAL neutrophilia of 20% to define inflammation, the highest area under ROC (aROC) of 0.71, 95%CI 0.61-0.82 was obtained by the giving three times weightage to secretion amount and color and adding it to erythema and oedema. Inter-rater K values for secretion amount (K = 0.87, 95%CI 0.73-1.0) and color (K = 0.86, 95%CI 0.69-1.0) were excellent. Respective intra-rater K were 0.95 (0.87-1.0) and 0.68 (0.47-0.89). Other inter-rater K ranged from 0.4 (erythema) to 0.64 (pallor).

    CONCLUSION: A repeatable FB-defined bronchitis scoring tool can be derived. However, a prospective study needs to be performed with larger numbers to further evaluate and validate these results.

    Matched MeSH terms: Inflammation/diagnosis
  16. Ahmad S, Azid NA, Boer JC, Lim J, Chen X, Plebanski M, et al.
    Front Immunol, 2018;9:2572.
    PMID: 30473698 DOI: 10.3389/fimmu.2018.02572
    Tumor necrosis factor-alpha (TNF) is a pleiotropic cytokine, which is thought to play a major role in the pathogenesis of inflammatory diseases, including allergy. TNF is produced at the early stage of allergen sensitization, and then continues to promote the inflammation cascade in the effector phase of allergic reactions. Consequently, anti-TNF treatment has been proposed as a potential therapeutic option. However, recent studies reveal anti-intuitive effects of TNF in the activation and proliferative expansion of immunosuppressive Tregs, tolerogenic DCs and MDSCs. This immunosuppressive effect of TNF is mediated by TNFR2, which is preferentially expressed by immunosuppressive cells. These findings redefine the role of TNF in allergic reaction, and suggest that targeting TNF-TNFR2 interaction itself may represent a novel strategy in the treatment of allergy.
    Matched MeSH terms: Inflammation/immunology*
  17. Harikrishnan H, Jantan I, Alagan A, Haque MA
    Inflammopharmacology, 2020 Feb;28(1):1-18.
    PMID: 31792765 DOI: 10.1007/s10787-019-00671-9
    The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
    Matched MeSH terms: Inflammation/drug therapy*
  18. Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR
    Front Pharmacol, 2019;10:1148.
    PMID: 31649532 DOI: 10.3389/fphar.2019.01148
    Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
    Matched MeSH terms: Inflammation; Inflammation Mediators
  19. Tan BL, Norhaizan ME
    Nutrients, 2019 Oct 25;11(11).
    PMID: 31731503 DOI: 10.3390/nu11112579
    Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
    Matched MeSH terms: Inflammation*
  20. Yap JKY, Pickard BS, Chan EWL, Gan SY
    Mol Neurobiol, 2019 Nov;56(11):7741-7753.
    PMID: 31111399 DOI: 10.1007/s12035-019-1638-7
    The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
    Matched MeSH terms: Inflammation/pathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links