MATERIALS AND METHODS: Adult male Sprague-Dawley rats were divided into 4 groups as control, LPS, CA and LPS + CA. The treatments with LPS (5 mg/kg) were intraperitoneally (i.p) injected on day 4 and CA ethanol extract (200 mg/kg) were given orally for 14 days. Morris Water Maze (MWM) test was performed to assess spatial learning and memory performance. Acute oral toxicity of the extract at the highest dose of 5000 mg/kg was also conducted.
RESULTS: Single administration of LPS was able to significantly elicit learning and memory impairment (p
METHODS: Rats were fed with illicit (a concoction of street ketamine) ketamine in doses of 100 (N=12), or 300 mg/kg (N=12) for four weeks. Half of the rats were sacrificed after the 4-week feeding for necropsy. The remaining rats were taken off ketamine for 8 weeks to allow for any potential recovery of pathological changes before being sacrificed for necropsy. Histopathological examination was performed on the kidney and urinary bladder.
RESULTS: Submucosal bladder inflammation was seen in 67% of the rats fed with 300 mg/kg illicit ketamine. No bladder inflammation was observed in the control and 100 mg/kg illicit ketamine groups. Renal changes, such as interstitial nephritis and papillary necrosis, were observed in rats given illicit ketamine. After ketamine cessation, no inflammation was observed in the bladder of all rats. However, renal inflammation remained in 60% of the rats given illicit ketamine. No dose-effect relationship was established between oral ketamine and changes in the kidneys.
CONCLUSION: Oral ketamine caused pathological changes in the urinary tract, similar to that described in exposure to parenteral ketamine. The changes in the urinary bladder were reversible after short-term exposure.
OBJECTIVE: This study investigated the potential of Stingless Bee Honey (SBH) to suppress lipopolysaccharide (LPS)-induced systemic acute inflammation in rats and to reveal the probable mechanism of action.
METHODS: Rats received 4.6 and 9.2 g/kg SBH for 7 days followed by a single injection of LPS after which blood samples were taken 6h later.
RESULTS: LPS induced liver, kidney, heart, and lung injury, were manifested by increased serum transaminases, alkaline phosphatase, creatine kinase, creatinine, and urea, along with multiple histological alterations, particularly leukocyte infiltration. Pro-inflammatory cytokines were elevated in the serum, and NF-κB p65, p38 MAPK, and HMGB-1 were significantly increased in different tissues of LPS-challenged rats. SBH prevented tissue injury, ameliorated pro-inflammatory cytokines, and suppressed NF-κB p65, p38 MAPK, and HMGB-1 in rats that had received LPS. In addition, SBH diminished reactive oxygen species (ROS) production, lipid peroxidation, and oxidative DNA damage, and enhanced glutathione and Nrf2 in LPS-treated rats.
CONCLUSION: SBH prevents systemic acute inflammation by suppressing NF-κB, p38 MAPK, HMGB-1, oxidative stress, and tissue injury in rats. Thus, SBH may represent an effective anti-inflammatory nutraceutical, pending further mechanistic studies.
AIM: The objective of this study was to assess the impact of ethyl acetate extract of fungus comb (EAEFC) on the inflammatory reaction in the spleen of mice induced by intraperitoneal injection of lipopolysaccharide (LPS).
METHODS: An experimental study was conducted using a post-test-only control group design with male BALB/C mice (n = 24). The mice were divided randomly into four groups, each comprising six mice, and administered substances via gavage. Groups I and III were administered a solution of 5% dimethyl sulfoxide (DMSO) in distilled water, while Groups II and IV were given 500 mg/kg BW EAEFC dissolved in 5% DMSO. On the fifteenth day, Groups I and II received intraperitoneal injections of 5 ml/kg BW saline, while Groups III and IV were injected with 10 mg/kg BW LPS dissolved in saline. After three hours, the mice were euthanized and splenic immunohistology was examined under a light microscope. The results were expressed as mean ± standard deviation, while the group differences were assessed statistically.
RESULTS: The expression of interleukin (IL)-1, furin, and activated NK cell was significantly higher in the inflamed model after EAEFC supplementation, while the extract suppressed IL-10.
CONCLUSION: EAEFC was found to alter cytokine expression in the spleen in response to inflammation.
METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively.
RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment.
CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.
METHODS: Endotoxemic shock was induced in sheep by administration of an escalating dose of lipopolysaccharide, after which they subsequently received either no fluid bolus resuscitation or a 0.9% saline bolus. Lung tissue, bronchoalveolar fluid (BAL) and plasma were analysed by real-time PCR, ELISA, flow cytometry and immunohistochemical staining to assess inflammatory cells, cytokines, hyaluronan and matrix metalloproteinases.
RESULTS: Endotoxemia was associated with decreased serum albumin and total protein levels, with activated neutrophils, while the glycocalyx glycosaminoglycan hyaluronan was significantly increased in BAL. Quantitative real-time PCR studies showed higher expression of IL-6 and IL-8 with saline resuscitation but no difference in matrix metalloproteinase expression. BAL and tissue homogenate levels of IL-6, IL-8 and IL-1β were elevated.
CONCLUSIONS: This data shows that the inflammatory response is enhanced when a host with endotoxemia is resuscitated with saline, with a comparatively higher release of inflammatory cytokines and endothelial/glycocalyx damage, but no change in matrix metalloproteinase levels.
OBJECTIVE: We sought to examine the role of the IL-33/ST2 axis in lung inflammation on acute ozone exposure in mice.
METHODS: ST2- and Il33-deficient, IL-33 citrine reporter, and C57BL/6 (wild-type) mice underwent a single ozone exposure (1 ppm for 1 hour) in all studies. Cell recruitment in lung tissue and the bronchoalveolar space, inflammatory parameters, epithelial barrier damage, and airway hyperresponsiveness (AHR) were determined.
RESULTS: We report that a single ozone exposure causes rapid disruption of the epithelial barrier within 1 hour, followed by a second phase of respiratory barrier injury with increased neutrophil recruitment, reactive oxygen species production, AHR, and IL-33 expression in epithelial and myeloid cells in wild-type mice. In the absence of IL-33 or IL-33 receptor/ST2, epithelial cell injury with protein leak and myeloid cell recruitment and inflammation are further increased, whereas the tight junction proteins E-cadherin and zonula occludens 1 and reactive oxygen species expression in neutrophils and AHR are diminished. ST2 neutralization recapitulated the enhanced ozone-induced neutrophilic inflammation. However, myeloid cell depletion using GR-1 antibody reduced ozone-induced lung inflammation, epithelial cell injury, and protein leak, whereas administration of recombinant mouse IL-33 reduced neutrophil recruitment in Il33-deficient mice.
CONCLUSION: Data demonstrate that ozone causes an immediate barrier injury that precedes myeloid cell-mediated inflammatory injury under the control of the IL-33/ST2 axis. Thus IL-33/ST2 signaling is critical for maintenance of intact epithelial barrier and inflammation.
METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR.
RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components.
CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.