MATERIALS AND METHODS: We retrospectively analysed data from 157 patients who underwent FG-TBLB, with the primary outcome being procedure-related pneumothorax. We assessed several risk factors for pneumothorax following FG-TBLB: patient characteristics, location of biopsy, number of biopsies and computed tomography pattern. Univariate and multivariate logistic regression analyses were performed.
RESULTS: One-hundred fifty-seven patients were included [mean (SD) age 57.9 (16.2) years; 60.5% male]. The most common location for FG-TBLB was the right upper lobe (n=45, 28.7%). The mean (SD) number of biopsy samples was 6.7 (2.1). Radiographic evidence of pneumothorax was reported in 12 (7.6%) patients, with 11 of those requiring intercostal chest tube intervention (mean air leak time: 5.7 days and 1 had persistent air leak requiring autologous blood patch pleurodesis. None experienced pneumothorax recurrence. Female gender and upper lobe location of the biopsy were identified as predisposing factors for pneumothorax. In the multivariable analysis, upper lobe biopsies were associated with a higher risk of pneumothorax (OR 0.120; 95% CI 0.015-0.963; p = 0.046).
CONCLUSION: The overall rate of pneumothorax is low. We recognise the increased risk of pneumothorax associated with upper lobe biopsy. These findings suggest that clinicians should exercise caution when performing FGTBLB in this region and consider alternative biopsy locations whenever feasible. We suggest adequate planning and preparation should be implemented to minimise the risk of pneumothorax following FG-TBLB.
CASE REPORT: Both procedures were conducted with advanced airway under total intravenous anaesthesia. 2.6 mm GS was used in combination with a 2.2 mm rEBUS probe, using a therapeutic bronchoscope. Case 1 describes a SPN in the apical segment of the right upper lobe that was inconclusive by forceps biopsy due to GS displacement and inadequate biopsy depth. A steerable GS combined with the novel cryoprobe subsequently overcame this issue. Case 2 describes a SPN in the apical segment of the left upper lobe in which the standard cryoprobe failed to advance through the GS due to steep angulation. It also highlights with shorter activation time, the novel cryoprobe enable biopsied tissue to be retrieved through the GS while the bronchoscope-GS remains wedgend in the airway segment. There were no bleeding or pneumothorax complications in both cases, and histopathological examination confirmed adenocarcinoma of the lung.
CONCLUSION: The 1.1 mm flexible cryoprobe in combination with GS and therapeutic bronchoscope offers an option to acquire adequate tissue in difficult-to-reach regions in the lung such as the apical segment of upper lobes. Further prospective series to evaluate its performance and safety in SPN biopsy is highly anticipated.
MATERIALS AND METHODS: A cross-sectional study was carried out among 51 cleaners. The respondents' background information and respiratory symptoms were gathered using a series of standardised questionnaires validated by the American Thoracic Society (ATS-DLD-78-A). The 8- hour respirable dust exposure to cleaners was measured using an air sampling pump (Gillian & Sensodyne Gil Air 3).
RESULTS: The mean of respirable dust was lower than permissible exposure limit with 0.63±0.57mg/m3. The respiratory symptoms among the cleaners showed no significant association between cough, phlegm, and breathing difficulties with working tenure. Meanwhile, wheezing and coughing with phlegm have an almost significant association with working tenure among cleaners with (Χ2=1.00, p=0.08) and (Χ2=1.00, p=0.07) respectively. Exposure to respirable dust has exhibited 6 times the prevalence of coughing with phlegm among cleaners (PR=6.28, 95% CI: 0.44, 89.38).
CONCLUSION: The findings of this study demonstrated that the cleaners were significantly affected by the respirable dust. The cleaners' working environment has caused them to be exposed to respirable dust.
METHODS: MEDLINE/PubMed and Google scholar databases were used for the selection of literature. The keywords used were mesenchymal stem cells, extracellular vesicles, clinical application of EVs and challenges EVs production.
RESULTS: These EVs have demonstrated robust capabilities in transporting intracellular cargo, playing a critical role in facilitating cell-to-cell communication by carrying functional molecules, including proteins, RNA species, DNAs, and lipids. Utilizing EVs as an alternative to stem cells offers several benefits, such as improved safety, reduced immunogenicity, and the ability to traverse biological barriers. Consequently, EVs have emerged as an increasingly attractive option for clinical use.
CONCLUSION: From this perspective, this review delves into the advantages and challenges associated with employing MSC-EVs in clinical settings, with a specific focus on their potential in treating conditions like lung diseases, cancer, and autoimmune disorders.
DESIGN: This pilot study over April 2016 to September 2019 adopts a before-and-after comparison design of a lung-protective mechanical ventilation protocol. All admissions to the PICU were screened daily for fulfillment of the Pediatric Acute Lung Injury Consensus Conference criteria and included.
SETTING: Multidisciplinary PICU.
PATIENTS: Patients with pediatric acute respiratory distress syndrome.
INTERVENTIONS: Lung-protective mechanical ventilation protocol with elements on peak pressures, tidal volumes, end-expiratory pressure to FIO2 combinations, permissive hypercapnia, and permissive hypoxemia.
MEASUREMENTS AND MAIN RESULTS: Ventilator and blood gas data were collected for the first 7 days of pediatric acute respiratory distress syndrome and compared between the protocol (n = 63) and nonprotocol groups (n = 69). After implementation of the protocol, median tidal volume (6.4 mL/kg [5.4-7.8 mL/kg] vs 6.0 mL/kg [4.8-7.3 mL/kg]; p = 0.005), PaO2 (78.1 mm Hg [67.0-94.6 mm Hg] vs 74.5 mm Hg [59.2-91.1 mm Hg]; p = 0.001), and oxygen saturation (97% [95-99%] vs 96% [94-98%]; p = 0.007) were lower, and end-expiratory pressure (8 cm H2O [7-9 cm H2O] vs 8 cm H2O [8-10 cm H2O]; p = 0.002] and PaCO2 (44.9 mm Hg [38.8-53.1 mm Hg] vs 46.4 mm Hg [39.4-56.7 mm Hg]; p = 0.033) were higher, in keeping with lung protective measures. There was no difference in mortality (10/63 [15.9%] vs 18/69 [26.1%]; p = 0.152), ventilator-free days (16.0 [2.0-23.0] vs 19.0 [0.0-23.0]; p = 0.697), and PICU-free days (13.0 [0.0-21.0] vs 16.0 [0.0-22.0]; p = 0.233) between the protocol and nonprotocol groups. After adjusting for severity of illness, organ dysfunction and oxygenation index, the lung-protective mechanical ventilation protocol was associated with decreased mortality (adjusted hazard ratio, 0.37; 95% CI, 0.16-0.88).
CONCLUSIONS: In pediatric acute respiratory distress syndrome, a lung-protective mechanical ventilation protocol improved adherence to lung-protective mechanical ventilation strategies and potentially mortality.