Case presentation: We present a case of 15-year-old boy from rural area, presented with chronic diarrhea and per rectal bleeding for 3 months. The diagnosis was determined by colonoscope which revealed a fungating mass identified at 10cm from anal verge. Histological examination confirmed diagnosis of signet ring cell adenocarcinoma. CT scan of the abdomen showed thickening involving the recto-sigmoid colon and rectal mass, without evidence of distant metastatic disease. The patient's carcinoembryonic antigen level was within the normal range. He underwent a colostomy and was subjected to neoadjuvant CCRT and surgery.
Discussion: This CASE highlights the importance and challenges in achieving early diagnosis and surgical intervention of signet-ring cell carcinoma in adolescents, as most cases are detected at an advanced stage coupled with the scarcity of information on these rarer subtypes which leads to a poor prognosis.
Conclusion: In managing Signet cell carcinoma of the colorectal, physician have to know that it has a poor prognosis in patients of any age. However, in young teenagers delayed diagnosis and treatment option are narrowed to palliative management. Genetic profiling of family members and similar environment population may be a key to early detection.
METHODS: One hundred computed tomography scans of disease-free knees were analyzed. A 3-dimensional reconstructed image of the tibia was generated and aligned to its anatomic axis in the coronal and sagittal planes. The tibia was then rotationally aligned to the tibial plateau (tibial centroid axis) and PTS was measured from best-fit planes on the surface of the proximal tibia and individually for the medial and lateral plateaus. This was then repeated with the tibia rotationally aligned to the ankle (transmalleolar axis).
RESULTS: When rotationally aligned to the tibial plateau, the mean PTS, medial PTS, and lateral PTS were 11.2° ± 3.0 (range, 4.7°-17.7°), 11.3° ± 3.2 (range, 2.7°-19.7°), and 10.9° ± 3.7 (range, 3.5°-19.4°), respectively. When rotationally aligned to the ankle, the mean PTS, medial PTS, and lateral PTS were 11.4° ± 3.0 (range, 5.3°-19.3°), 13.9° ± 3.7 (range, 3.1°-24.4°), and 9.7° ± 3.6 (range, 0.8°-17.7°), respectively.
CONCLUSION: The PTS in the normal Asian knee is on average 11° (mean) with a reference range of 5°-17° (mean ± 2 standard deviation). This has implications to surgery and implant design.
Method: Quasi-experimental and repeated-measures study designs were used in this study. Twenty-six adults with normal hearing (17 females, 9 males) participated. ABRs were acquired from the study participants at 3 intensity levels (80, 60, and 40 dB nHL), 3 frequencies (500, 1000, and 2000 Hz), 2 electrode montages (ipsilateral and vertical), and 2 stimuli (NB LS CE-Chirp and tone-burst) using 2 stopping criteria (fixed averages at 4,000 sweeps and F test at multiple points = 3.1).
Results: Wave V amplitudes were only 19%-26% larger for the vertical recordings than the ipsilateral recordings in both the ABRs obtained from the NB LS CE-Chirp and tone-burst stimuli. The mean differences in the F test at multiple points values and the residual noise levels between the ABRs obtained from the vertical and ipsilateral montages were statistically not significant. In addition, the ABR elicited from the NB LS CE-Chirp was significantly larger (up to 69%) than those from the tone-burst, except at the lower intensity level.
Conclusion: Both the ipsilateral and vertical montages can be used to record ABR to the NB LS CE-Chirp because of the small enhancement in the wave V amplitude provided by the vertical montage.
METHODS: A cross-sectional observational study was designed. Forty normotensive (median age 47 +/- 6 yrs.) and twenty untreated hypertensive Malay men (median age 50 +/- 7 yrs.) without clinical evidence of cardiovascular complications were selected. Pulse wave velocity measured using the automated Complior machine was used as an index of arterial stiffness. Other measurements obtained were blood pressure, body mass index, fasting insulin, cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, glucose and creatinine level.
RESULTS: The blood pressure and pulse wave velocity (PWV) were significantly higher in the hypertensives compared to the normotensives (blood pressure 169/100 mm Hg +/- 14/7 vs. 120/80 mm Hg +/- 10/4, p < 0.001; PWV 11.69 m/s +/- 1.12 vs. 8.83 m/s +/- 1.35, p < 0.001). Other variables such as body mass index, fasting insulin, cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides and haematocrit were comparable among the two groups. Within each group, there was a significant positive correlation between pulse wave velocity and systolic blood pressure (r = 0.76, p < 0.001 in normotensives; r = 0.73, p < 0.001 in hypertensives) and mean arterial pressure (r = 0.74, p < 0.001 in normotensives; r = 0.73, p < 0.001 in hypertensives). No correlation was noted between pulse wave velocity and diastolic blood pressure, age, body mass index, fasting insulin level, cholesterol, HDL-cholesterol, LDL-cholesterol or triglyceride levels.
CONCLUSION: Arterial stiffness as determined by PWV is increased in newly diagnosed untreated hypertensive subjects even before clinically evident cardiovascular disease. However, arterial stiffness is not correlated with the fasting insulin level in normotensives and newly diagnosed hypertensives.
METHOD: This prospective study conducted on 24 feet with CTEV (18 babies) with Pirani score ranging between 2 to 6. Eighteen normal babies (36 feet) were selected as control. We used Color Doppler Ultrasound to assess dorsalis pedis and posterior tibial arteries before initiating the treatment. Second ultrasound was performed in study group upon completion of Ponseti treatment.
RESULTS: The patients were from one week to 15 weeks of life. Dorsalis pedis arterial flows were absent in 7 clubfeet (29.1%) while the remaining 17 clubfeet (70.8%) had normal flow. There was a significant association between Pirani severity score and vascular status in congenital clubfoot. There was a higher proportion of clubfeet having abnormal vascularity when the Pirani severity score was 5 and more. In study group, posterior tibial arteries were detectable and patent in all feet. All normal feet in control group had normal arterial flow. There was a significant difference in vascular flow before and after the Ponseti treatment (p 0.031).
CONCLUSION: The study concludes that there is an association between Pirani severity score and arterial deficiency in CTEV. Ponseti treatment is safe in CTEV with arterial deficiency and able to reconstitute the arterial flow in majority of cases.
METHODS: Our aim was to determine normative EGJ metrics in a large international cohort of healthy volunteers undergoing HRM (Medtronic, Laborie, and Diversatek software) acquired from 16 countries in four world regions. EGJ-CI was calculated by the same two investigators using a distal contractile integral-like measurement across the EGJ for three respiratory cycles and corrected for respiration (mm Hg cm), using manufacturer-specific software tools. EGJ morphology was designated according to Chicago Classification v3.0. Median EGJ-CI values were calculated across age, genders, HRM systems, and regions.
RESULTS: Of 484 studies (28.0 years, 56.2% F, 60.7% Medtronic studies, 26.0% Laborie, and 13.2% Diversatek), EGJ morphology was type 1 in 97.1%. Median EGJ-CI was similar between Medtronic (37.0 mm Hg cm, IQR 23.6-53.7 mm Hg cm) and Diversatek (34.9 mm Hg cm, IQR 22.1-56.1 mm Hg cm, P = 0.87), but was significantly higher using Laborie equipment (56.5 mm Hg cm, IQR 35.0-75.3 mm Hg cm, P