Norms and normative multiagent systems have become the subjects of interest for many researchers. Such interest is caused by the need for agents to exploit the norms in enhancing their performance in a community. The term norm is used to characterize the behaviours of community members. The concept of normative multiagent systems is used to facilitate collaboration and coordination among social groups of agents. Many researches have been conducted on norms that investigate the fundamental concepts, definitions, classification, and types of norms and normative multiagent systems including normative architectures and normative processes. However, very few researches have been found to comprehensively study and analyze the literature in advancing the current state of norms and normative multiagent systems. Consequently, this paper attempts to present the current state of research on norms and normative multiagent systems and propose a norm's life cycle model based on the review of the literature. Subsequently, this paper highlights the significant areas for future work.
In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.
Honey is a supersaturated solution of sugars, enriched with proteins, minerals, vitamins, organic acids and polyphenols. Gamma irradiation is a physical technique of food preservation which protects the honey from insects' and microbial contamination during storage. We investigated the effect of gamma irradiation on physicochemical properties in two types of Malaysian honey, Gelam and Nenas.
The title compound, C13H18N2O2S, adopts a cis conformation between the methyl-benzoyl and thiono groups across their thio-urea C-N bond. However, the methyl-benzoyl group and N2CS thio-urea moiety are twisted by 15.03 (3)°. In the molecule there is an N-H⋯O hydrogen bond. In the crystal, mol-ecules are linked by O-H⋯O inter-actions, generating chains extending along the c-axis direction.
In the title compound, C12H15FN2O2S, the mol-ecule adopts a cis configuration of the fluoro-benzoyl group with respect to the thiono group about their C-N bond. The dihedral angle between the fluoro-benzoyl group and the thio-urea N2CS fragment is 69.60 (11)°. An intra-molecular N-H⋯O hydrogen bond occurs. In the crystal, mol-ecules form chains along the b-axis direction via O-H⋯S and C-H⋯O hydrogen bonds.
To determine the optimum light intensity per cell required for rapid growth regardless of cell density, continuous cultures of the microalga Chlorella zofingiensis were grown with a sufficient supply of nutrients and CO2 and were subjected to different light intensities in the range of 75-1000 μE m(-2) s(-1). The cell density of culture increased over time for all light conditions except for the early stage of the high light condition of 1000 μE m(-2) s(-1). The light intensity per cell required for the high specific growth rate of 0.5 day(-1) was determined to be 28-45 μE g-ds(-1) s(-1). The specific growth rate was significantly correlated to light intensity (y=0.721×x/(66.98+x), r(2)=0.85, p<0.05). A high specific growth rate was maintained over a range of light intensities (250-1000 μE m(-2) s(-1)). This range of light intensities suggested that effective production of C. zofingiensis can be maintained outdoors under strong light by using the optimum specific light intensity.
Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency.
Refluxing a mixture of 1,10-phenanthroline, (4-fluoro-phen-yl)thio-urea and cadmium(II) chloride did not produce the expected mixed-ligand complex but formed a co-crystal of the two ligands, C12H8N2·C7H7FN2S. The asymmetric unit consists of two pairs of the co-crystal mol-ecules. In each (4-fluoro-phen-yl)thio-urea mol-ecule, the planes of the N2CS thio-urea units are almost perpendicular to the corresponding fluoro-benzene rings, subtending angles of 76.53 (7) and 85.25 (7)°. In the crystal, N-H⋯N and N-H⋯S hydrogen bonds form inversion dimers from the co-crystal pairs. A weak π-π inter-action between the phenanthroline rings [centroid-centroid distance = 3.7430 (15)Å] is also observed.
In the title compound, C10H10Cl2N2OS, the mol-ecule adopts a trans-cis conformation with respect to the position of the carbonyl group and the chloro-phenyl groups relative to the thiono group across the C-N bonds. The mol-ecule is stabilized by an N-H⋯O hydrogen bond. In the crystal, mol-ecules are linked by N-H⋯S and C-H⋯O hydrogen bonds, forming zigzag chains along the b-axis direction. C-H⋯π inter-actions are also present.
The title compound, C10H9Cl2N3O3S, adopts a trans-cis conformation with respect to the position of chloropropionyl and chloronitrobenzene groups respectively, against the thiono about their C-N bonds. The conformation is stabilized by an intra-molecular N-H⋯O hydrogen bond. In the crystal, there is a short Cl⋯Cl contact with a distance of 3.386 (13) Å.
Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
The possibility of achieving many electrons per absorbed photon of sufficient energy by quantum dots (QDs) drives the motivation to build high performance quantum dot solar cells (QDSCs). Although performance of dye-sensitized solar cells (DSCs), with similar device configuration as that of QDSCs, has significantly improved in the last two decades QDSCs are yet to demonstrate impressive device performances despite the remarkable features of QDs as light harvesters. We investigated the fundamental differences in the optical properties of QDs and dyes using DFT calculations to get insights on the inferior performance of QDSCs. The CdSe QDs and the ruthenium bipyridyl dicarboxylic acid dye (N3) were used as typical examples in this study. Based on a generalized equation of state correlating material properties and photoconversion efficiency, we calculated ground and excited state properties of these absorbers at the B3LYP/lanl2dz level of DFT and analyzed them on the basis of the device performance. Five missing links have been identified in the study which provides numerous insights into building high efficiency QDSCs. They are (i) fundamental differences in the emitting states of the QDs in the strong and weak confinement regimes were observed, which explained successfully the performance differences; (ii) the crucial role of bifunctional ligands that bind the QDs and the photo-electrode was identified; in most cases use of bifunctional ligands does not lead to a QD enabled widening of the absorption of the photo-electrode; (iii) wide QDs size distribution further hinders efficient electron injections; (iv) wide absorption cross-section of QDs favours photon harvesting; and (v) the role of redox potential of the electrolyte in the QD reduction process.
In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.
Hypertension is a risk factor for several cardiovascular diseases and oxidative stress suggested to be involved in the pathophysiology. Antihypertensive drug Clonidine action in ameliorating oxidative stress was not well studied. Therefore, this study investigate the effect of Clonidine on oxidative stress markers and nitric oxide (NO) in SHR and nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups [SHR, SHR+Clonidine (SHR-C), SHR+L-NAME, SHR+Clonidine+L-NAME(SHRC+L-NAME)]. Rats (SHRC) were administered with Clonidine (0.5 mg kg(-1) day(-1)) from 4 weeks to 28 weeks in drinking water and L-NAME (25 mg kg(-1) day(-1)) from 16 weeks to 28 weeks to SHRC+L-NAME. Systolic blood pressure (SBP) was measured. At the end of 28 weeks, all rats were sacrificed and in their heart homogenate, oxidative stress parameters and NO was assessed. Clonidine treatment significantly enhanced the total antioxidant status (TAS) (P < 0.001) and reduced the thibarbituric acid reactive substances (TBARS) (P < 0.001) and protein carbonyl content (PCO) (P < 0.05). These data suggest that oxidative stress is involved in the hypertensive organ damage and Clonidine not only lowers the SBP but also ameliorated the oxidative stress in the heart of SHR and SHR+L-NAME.
The premature ovarian failures with underlying chromosomal abnormalities are normally X-linked, although their associations with the autosomal and the Robertsonian translocations are also possible. Here, we are reporting a case of premature ovarian failure which was associated with a translocation between the long arm of chromosome 7 at q11.23 and the short arm of chromosome 5 at p15.3. The proband was a 26-year-old Malay woman who presented with premature ovarian failure, who was referred for cytogenetic testing due to the suspicion of a chromosomal anomaly. Her physical examination revealed that she had no abdominal or pelvic masses and that she had normal secondary sexual characteristics. Her medical history as well, revealed no points for concern. However, a consanguineous relationship existed, as the patient's paternal grandmother and maternal grandfather were biological cousins. Our present case indicated that region p15.3 of chromosome 5 and region q11.23 of chromosome 7 possibly carried essential genes for the ovarian function and that they postulated a link between the consanguinity and the chromosomal abnormalities.
A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.
Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa.