Displaying publications 261 - 280 of 746 in total

Abstract:
Sort:
  1. De Silva JR, Lau YL, Fong MY
    Parasit Vectors, 2017 01 03;10(1):2.
    PMID: 28049516 DOI: 10.1186/s13071-016-1935-1
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia.

    METHODS: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

    RESULTS: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

    CONCLUSIONS: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur.

    Matched MeSH terms: Genetic Variation*
  2. Ahmed MA, Fauzi M, Han ET
    Malar J, 2018 Mar 14;17(1):115.
    PMID: 29540177 DOI: 10.1186/s12936-018-2256-y
    BACKGROUND: Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia.

    METHODS: A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software.

    RESULTS: Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes.

    CONCLUSIONS: This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.

    Matched MeSH terms: Genetic Variation*
  3. Ito N, Iwanaga H, Charles S, Diway B, Sabang J, Chong L, et al.
    Genes Genet Syst, 2017 Sep 12;92(1):1-20.
    PMID: 28003572 DOI: 10.1266/ggs.16-00013
    Geographical variation in soil bacterial community structure in 26 tropical forests in Southeast Asia (Malaysia, Indonesia and Singapore) and two temperate forests in Japan was investigated to elucidate the environmental factors and mechanisms that influence biogeography of soil bacterial diversity and composition. Despite substantial environmental differences, bacterial phyla were represented in similar proportions, with Acidobacteria and Proteobacteria the dominant phyla in all forests except one mangrove forest in Sarawak, although highly significant heterogeneity in frequency of individual phyla was detected among forests. In contrast, species diversity (α-diversity) differed to a much greater extent, being nearly six-fold higher in the mangrove forest (Chao1 index = 6,862) than in forests in Singapore and Sarawak (~1,250). In addition, natural mixed dipterocarp forests had lower species diversity than acacia and oil palm plantations, indicating that aboveground tree composition does not influence soil bacterial diversity. Shannon and Chao1 indices were correlated positively, implying that skewed operational taxonomic unit (OTU) distribution was associated with the abundance of overall and rare (singleton) OTUs. No OTUs were represented in all 28 forests, and forest-specific OTUs accounted for over 70% of all detected OTUs. Forests that were geographically adjacent and/or of the same forest type had similar bacterial species composition, and a positive correlation was detected between species divergence (β-diversity) and direct distance between forests. Both α- and β-diversities were correlated with soil pH. These results suggest that soil bacterial communities in different forests evolve largely independently of each other and that soil bacterial communities adapt to their local environment, modulated by bacterial dispersal (distance effect) and forest type. Therefore, we conclude that the biogeography of soil bacteria communities described here is non-random, reflecting the influences of contemporary environmental factors and evolutionary history.
    Matched MeSH terms: Genetic Variation*
  4. Lim KC, Then AY, Wee AKS, Sade A, Rumpet R, Loh KH
    Sci Rep, 2021 Jul 21;11(1):14874.
    PMID: 34290296 DOI: 10.1038/s41598-021-94257-7
    The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.
    Matched MeSH terms: Genetic Variation/genetics*
  5. Vaithilingam RD, Safii SH, Baharuddin NA, Ng CC, Cheong SC, Bartold PM, et al.
    J Periodontal Res, 2014 Dec;49(6):683-95.
    PMID: 24528298 DOI: 10.1111/jre.12167
    Studies to elucidate the role of genetics as a risk factor for periodontal disease have gone through various phases. In the majority of cases, the initial 'hypothesis-dependent' candidate-gene polymorphism studies did not report valid genetic risk loci. Following a large-scale replication study, these initially positive results are believed to be caused by type 1 errors. However, susceptibility genes, such as CDKN2BAS (Cyclin Dependend KiNase 2B AntiSense RNA; alias ANRIL [ANtisense Rna In the Ink locus]), glycosyltransferase 6 domain containing 1 (GLT6D1) and cyclooxygenase 2 (COX2), have been reported as conclusive risk loci of periodontitis. The search for genetic risk factors accelerated with the advent of 'hypothesis-free' genome-wide association studies (GWAS). However, despite many different GWAS being performed for almost all human diseases, only three GWAS on periodontitis have been published - one reported genome-wide association of GLT6D1 with aggressive periodontitis (a severe phenotype of periodontitis), whereas the remaining two, which were performed on patients with chronic periodontitis, were not able to find significant associations. This review discusses the problems faced and the lessons learned from the search for genetic risk variants of periodontitis. Current and future strategies for identifying genetic variance in periodontitis, and the importance of planning a well-designed genetic study with large and sufficiently powered case-control samples of severe phenotypes, are also discussed.
    Matched MeSH terms: Genetic Variation/genetics*
  6. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
    Matched MeSH terms: Genetic Variation/genetics*
  7. Eamsobhana P, Lim PE, Yong HS
    J Helminthol, 2015 May;89(3):317-25.
    PMID: 24622302 DOI: 10.1017/S0022149X14000108
    The Angiostrongylus lungworms are of public health and veterinary concern in many countries. At the family level, the Angiostrongylus lungworms have been included in the family Angiostrongylidae or the family Metastrongylidae. The present study was undertaken to determine the usefulness and suitability of the nuclear 18S (small subunit, SSU) rDNA sequences for differentiating various taxa of the genus Angiostrongylus, as well as to determine the systematics and phylogenetic relationship of Angiostrongylus species and other metastrongyloid taxa. This study revealed six 18S (SSU) haplotypes in A. cantonensis, indicating considerable genetic diversity. The uncorrected pairwise 'p' distances among A. cantonensis ranged from 0 to 0.86%. The 18S (SSU) rDNA sequences unequivocally distinguished the five Angiostrongylus species, confirmed the close relationship of A. cantonensis and A. malaysiensis and that of A. costaricensis and A. dujardini, and were consistent with the family status of Angiostrongylidae and Metastrongylidae. In all cases, the congeneric metastrongyloid species clustered together. There was no supporting evidence to include the genus Skrjabingylus as a member of Metastrongylidae. The genera Aelurostrongylus and Didelphostrongylus were not recovered with Angiostrongylus, indicating polyphyly of the Angiostrongylidae. Of the currently recognized families of Metastrongyloidea, only Crenosomatidae appeared to be monophyletic. In view of the unsettled questions regarding the phylogenetic relationships of various taxa of the metastrongyloid worms, further analyses using more markers and more taxa are warranted.
    Matched MeSH terms: Genetic Variation*
  8. Eamsobhana P, Yong HS, Song SL, Prasartvit A, Boonyong S, Tungtrongchitr A
    J Helminthol, 2018 Mar;92(2):254-259.
    PMID: 28330511 DOI: 10.1017/S0022149X17000244
    The rat lungworm Angiostrongylus malaysiensis is a metastrongyloid nematode parasite. It has been reported in Malaysia, Thailand, Laos, Myanmar, Indonesia and Japan. In this study, A. malaysiensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed high COI haplotype diversity of A. malaysiensis from Thailand. The geographical isolates of A. malaysiensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. cantonensis. In the present study, five new haplotypes were identified in addition to the four haplotypes reported in the literature. Phylogenetic analysis revealed that four of these five new haplotypes - one from Mae Hong Song (northern region), two from Tak (western region) and one from Phang Nga (southern region) - formed a distinct clade with those from Phatthalung (southern region) and Malaysia. The haplotype from Malaysia was identical to that of Phatthalung (haplotype AM1). In general, the COI sequences did not differentiate unambiguously the various geographical isolates of A. malaysiensis. This study has confirmed the presence of high COI genetic diversity in various geographical isolates of A. malaysiensis. The COI gene sequence will be suitable for studying genetic diversity, population structure and phylogeography.
    Matched MeSH terms: Genetic Variation*
  9. Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, et al.
    Genome Res, 2009 May;19(5):815-25.
    PMID: 19411602 DOI: 10.1101/gr.085589.108
    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.
    Matched MeSH terms: Genetic Variation*
  10. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, A Rashid MR, et al.
    Leg Med (Tokyo), 2024 May;68:102416.
    PMID: 38325234 DOI: 10.1016/j.legalmed.2024.102416
    X-chromosome short tandem repeats (X-STRs) are useful for human identification, especially in complex kinship scenarios. Since forensic statistical parameters vary among populations and the X-STRs population data for the diverse population of Peninsular Malaysia's are unavailable, this attempt for Indians (n = 201) appears forensically relevant to support the 12 X-STRs markers' evidential value for human identification in Malaysia. The Qiagen Investigator® Argus X-12 QS kit showed that DXS10135 was the most polymorphic locus with high genetic diversity, polymorphism information richness, heterozygosity, and exclusion power. Based on allele frequencies, the strength of discrimination and mean exclusion chance (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) values for the Malaysian Indians were ≥0.999997790686228. As for haplotype frequencies, the overall discrimination power and mean exclusion probability (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) were ≥0.9999984801951. The genetic distance, neighbor-joining phylogenetic tree, and principal component analysis also supported the evidential value of the 12 X-STRs markers for forensic practical caseworks in Malaysia.
    Matched MeSH terms: Genetic Variation*
  11. Ng HK, Chua KH, Kee BP, Chuah KH, Por LY, Puah SM
    J Med Microbiol, 2024 May;73(5).
    PMID: 38712922 DOI: 10.1099/jmm.0.001832
    Introduction. Resistance towards amoxicillin in Helicobacter pylori causes significant therapeutic impasse in healthcare settings worldwide. In Malaysia, the standard H. pylori treatment regimen includes a 14-day course of high-dose proton-pump inhibitor (rabeprazole, 20 mg) with amoxicillin (1000 mg) dual therapy.Hypothesis/Gap Statement. The high eradication rate with amoxicillin-based treatment could be attributed to the primary resistance rates of amoxicillin being relatively low at 0%, however, a low rate of secondary resistance has been documented in Malaysia recently.Aim. This study aims to investigate the amino acid mutations and related genetic variants in PBP1A of H. pylori, correlating with amoxicillin resistance in the Malaysian population.Methodology. The full-length pbp1A gene was amplified via PCR from 50 genomic DNA extracted from gastric biopsy samples of H. pylori-positive treatment-naïve Malaysian patients. The sequences were then compared with reference H. pylori strain ATCC 26695 for mutation and variant detection. A phylogenetic analysis of 50 sequences along with 43 additional sequences from the NCBI database was performed. These additional sequences included both amoxicillin-resistant strains (n=20) and amoxicillin-sensitive strains (n=23).Results. There was a total of 21 variants of amino acids, with three of them located in or near the PBP-motif (SKN402-404). The percentages of these three variants are as follows: K403X, 2%; S405I, 2% and E406K, 16%. Based on the genetic markers identified, the resistance rate for amoxicillin in our sample remained at 0%. The phylogenetic examination suggested that H. pylori might exhibit unique conserved pbp1A sequences within the Malaysian context.Conclusions. Overall, the molecular analysis of PBP1A supported the therapeutic superiority of amoxicillin-based regimens. Therefore, it is crucial to continue monitoring the amoxicillin resistance background of H. pylori with a larger sample size to ensure the sustained effectiveness of amoxicillin-based treatments in Malaysia.
    Matched MeSH terms: Genetic Variation*
  12. Leonhard SE, Mandarakas MR, Gondim FAA, Bateman K, Ferreira MLB, Cornblath DR, et al.
    Nat Rev Neurol, 2019 Nov;15(11):671-683.
    PMID: 31541214 DOI: 10.1038/s41582-019-0250-9
    Guillain-Barré syndrome (GBS) is a rare, but potentially fatal, immune-mediated disease of the peripheral nerves and nerve roots that is usually triggered by infections. The incidence of GBS can therefore increase during outbreaks of infectious diseases, as was seen during the Zika virus epidemics in 2013 in French Polynesia and 2015 in Latin America. Diagnosis and management of GBS can be complicated as its clinical presentation and disease course are heterogeneous, and no international clinical guidelines are currently available. To support clinicians, especially in the context of an outbreak, we have developed a globally applicable guideline for the diagnosis and management of GBS. The guideline is based on current literature and expert consensus, and has a ten-step structure to facilitate its use in clinical practice. We first provide an introduction to the diagnostic criteria, clinical variants and differential diagnoses of GBS. The ten steps then cover early recognition and diagnosis of GBS, admission to the intensive care unit, treatment indication and selection, monitoring and treatment of disease progression, prediction of clinical course and outcome, and management of complications and sequelae.
    Matched MeSH terms: Genetic Variation/genetics
  13. Yosida TH, Sagai T
    Chromosoma, 1975;50(3):283-300.
    PMID: 1149576
    All subspecies of black rats (Rattus rattus) used in the present study are characterized by having large and clear C-bands at the centromeric region. The appearance of the bands, however, is different in the subspecies. Chromosome pair No. 1 in Asian type black rats (2n=42), which are characterized by an acrocentric and subtelocentric polymorphism, showed C-band polymorphism. In Phillipine rats (R. rattus mindanensis) the pair was subtelocentric with C-bands, but in Malayan black rats (R. rattus diardii) it was usually acrocentric with C-bands. In Hong-Kong (R. rattus flavipectus) and Japanese black rats (R. rattus tanezumi) it was polymorphic with respect to the presence of acrocentrics with C-bands or subtelocentrics without C-bands. The other chromosomes pairs showed clear C-bands, but in Hong-Kong black rats the pairs No. 2 and 5 were polymorphic with and without C-bands. In Japanese black rats, 6 chromosome pairs (No. 3, 4, 7, 9, 11 and 13) were polymorphic in regard to presence and absence of C-bands, but the other 5 chromosome pairs (No. 2, 5, 6, 8 and 10) showed always absence of C-bands. Only pair No. 12 usually showed C-bands. C-bands in small metacentric pairs (No. 14 to 20) in Asian type black rats generally large in size, but those in the Oceanian (2n=38) and Ceylon type black rats (2n=40) were small. In the hybrids between Asian and Oceanian type rats, heteromorphic C-bands, one large and the other small, were observed. Based on the consideration of karyotype evolution in the black rats, the C-band is suggested to have a tendency toward the diminution as far as the related species are concerned.
    Matched MeSH terms: Genetic Variation*
  14. Yang Y, Shu X, Shu XO, Bolla MK, Kweon SS, Cai Q, et al.
    EBioMedicine, 2019 Oct;48:203-211.
    PMID: 31629678 DOI: 10.1016/j.ebiom.2019.09.006
    BACKGROUND: We previously conducted a systematic field synopsis of 1059 breast cancer candidate gene studies and investigated 279 genetic variants, 51 of which showed associations. The major limitation of this work was the small sample size, even pooling data from all 1059 studies. Thereafter, genome-wide association studies (GWAS) have accumulated data for hundreds of thousands of subjects. It's necessary to re-evaluate these variants in large GWAS datasets.

    METHODS: Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets.

    FINDINGS: Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P 

    Matched MeSH terms: Genetic Variation*
  15. Sharma R, Goossens B, Heller R, Rasteiro R, Othman N, Bruford MW, et al.
    Sci Rep, 2018 01 17;8(1):880.
    PMID: 29343863 DOI: 10.1038/s41598-017-17042-5
    The origin of the elephant on the island of Borneo remains elusive. Research has suggested two alternative hypotheses: the Bornean elephant stems either from a recent introduction in the 17th century or from an ancient colonization several hundreds of thousands years ago. Lack of elephant fossils has been interpreted as evidence for a very recent introduction, whereas mtDNA divergence from other Asian elephants has been argued to favor an ancient colonization. We investigated the demographic history of Bornean elephants using full-likelihood and approximate Bayesian computation analyses. Our results are at odds with both the recent and ancient colonization hypotheses, and favour a third intermediate scenario. We find that genetic data favour a scenario in which Bornean elephants experienced a bottleneck during the last glacial period, possibly as a consequence of the colonization of Borneo, and from which it has slowly recovered since. Altogether the data support a natural colonization of Bornean elephants at a time when large terrestrial mammals could colonise from the Sunda shelf when sea levels were much lower. Our results are important not only in understanding the unique history of the colonization of Borneo by elephants, but also for their long-term conservation.
    Matched MeSH terms: Genetic Variation/genetics
  16. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al.
    Science, 2020 Mar 20;367(6484).
    PMID: 32193295 DOI: 10.1126/science.aay5012
    Genome sequences from diverse human groups are needed to understand the structure of genetic variation in our species and the history of, and relationships between, different populations. We present 929 high-coverage genome sequences from 54 diverse human populations, 26 of which are physically phased using linked-read sequencing. Analyses of these genomes reveal an excess of previously undocumented common genetic variation private to southern Africa, central Africa, Oceania, and the Americas, but an absence of such variants fixed between major geographical regions. We also find deep and gradual population separations within Africa, contrasting population size histories between hunter-gatherer and agriculturalist groups in the past 10,000 years, and a contrast between single Neanderthal but multiple Denisovan source populations contributing to present-day human populations.
    Matched MeSH terms: Genetic Variation*
  17. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2021 Apr 07;11(1):7597.
    PMID: 33828137 DOI: 10.1038/s41598-021-87039-8
    As a crop for the new millennium Bambara groundnut (Vigna subterranea [L.] Verdc.) considered as leading legumes in the tropical regions due to its versatile advantages. The main intent of this study was to find out the high yielding potential genotypes and considering these genotypes to develop pure lines for commercial cultivation in Malaysia. Considering the 14 qualitative and 27 quantitative traits of fifteen landraces the variation and genetic parameters namely, variability, heritability, genetic advance, characters association, and cluster matrix were determined. ANOVA revealed significant variation for all the agronomic traits (except plant height). Among the accessions, highly significant differences (P ≤ 0.01) were found for almost all the traits excluding fifty percent flowering date, seed length, seed width. The 16 traits out of the 27 quantitative traits had a coefficient of variation (CV) ≥ 20%. A positive and intermediate to perfect highly significant association (r = 0.23 to 1.00; P 
    Matched MeSH terms: Genetic Variation/genetics
  18. Osada N, Nakagome S, Mano S, Kameoka Y, Takahashi I, Terao K
    Genetics, 2013 Nov;195(3):1027-35.
    PMID: 24026095 DOI: 10.1534/genetics.113.156703
    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.
    Matched MeSH terms: Genetic Variation*
  19. Hafizi R, Salleh B, Latiffah Z
    Braz J Microbiol, 2013;44(3):959-68.
    PMID: 24516465
    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.
    Matched MeSH terms: Genetic Variation*
  20. Mason B, Cervena B, Frias L, Goossens B, Hasegawa H, Keuk K, et al.
    Parasitology, 2024 Apr;151(5):514-522.
    PMID: 38629119 DOI: 10.1017/S0031182024000386
    With many non-human primates (NHPs) showing continued population decline, there is an ongoing need to better understand their ecology and conservation threats. One such threat is the risk of disease, with various bacterial, viral and parasitic infections previously reported to have damaging consequences for NHP hosts. Strongylid nematodes are one of the most commonly reported parasitic infections in NHPs. Current knowledge of NHP strongylid infections is restricted by their typical occurrence as mixed infections of multiple genera, which are indistinguishable through traditional microscopic approaches. Here, modern metagenomics approaches were applied for insight into the genetic diversity of strongylid infections in South-East and East Asian NHPs. We hypothesized that strongylid nematodes occur in mixed communities of multiple taxa, dominated by Oesophagostomum, matching previous findings using single-specimen genetics. Utilizing the Illumina MiSeq platform, ITS-2 strongylid metabarcoding was applied to 90 samples from various wild NHPs occurring in Malaysian Borneo and Japan. A clear dominance of Oesophagostomum aculeatum was found, with almost all sequences assigned to this species. This study suggests that strongylid communities of Asian NHPs may be less species-rich than those in African NHPs, where multi-genera communities are reported. Such knowledge contributes baseline data, assisting with ongoing monitoring of health threats to NHPs.
    Matched MeSH terms: Genetic Variation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links