Displaying publications 261 - 280 of 811 in total

Abstract:
Sort:
  1. Milad A, Babalghaith AM, Al-Sabaeei AM, Dulaimi A, Ali A, Reddy SS, et al.
    Int J Environ Res Public Health, 2022 Nov 11;19(22).
    PMID: 36429580 DOI: 10.3390/ijerph192214863
    The environmental concerns of global warming and energy consumption are among the most severe issues and challenges facing human beings worldwide. Due to the relatively higher predicted temperatures (150-180 °C), the latest research on pavement energy consumption and carbon dioxide (CO2) emission assessment mentioned contributing to higher environmental burdens such as air pollution and global warming. However, warm-mix asphalt (WMA) was introduced by pavement researchers and the road construction industry instead of hot-mix asphalt (HMA) to reduce these environmental problems. This study aims to provide a comparative overview of WMA and HMA from environmental and economic perspectives in order to highlight the challenges, motivations, and research gaps in using WMA technology compared to HMA. It was discovered that the lower production temperature of WMA could significantly reduce the emissions of gases and fumes and thus reduce global warming. The lower production temperature also provides a healthy work environment and reduces exposure to fumes. Replacing HMA with WMA can reduce production costs because of the 20-75% lower energy consumption in WMA production. It was also released that the reduction in energy consumption is dependent on the fuel type, energy source, material heat capacity, moisture content, and production temperature. Other benefits of using WMA are enhanced asphalt mixture workability and compaction because the additives in WMA reduce asphalt binder viscosity. It also allows for the incorporation of more waste materials, such as reclaimed asphalt pavement (RAP). However, future studies are recommended on the possibility of using renewable, environmentally friendly, and cost-effective materials such as biomaterials as an alternative to conventional WMA-additives for more sustainable and green asphalt pavements.
    Matched MeSH terms: Technology
  2. Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, et al.
    Sci Total Environ, 2023 Mar 15;864:160990.
    PMID: 36539095 DOI: 10.1016/j.scitotenv.2022.160990
    Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.
    Matched MeSH terms: Technology
  3. Ajien A, Idris J, Md Sofwan N, Husen R, Seli H
    Waste Manag Res, 2023 Jan;41(1):37-51.
    PMID: 36346183 DOI: 10.1177/0734242X221127167
    The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.
    Matched MeSH terms: Technology
  4. Raees S, Ullah F, Javed F, Akil HM, Jadoon Khan M, Safdar M, et al.
    Int J Biol Macromol, 2023 Mar 31;232:123476.
    PMID: 36731696 DOI: 10.1016/j.ijbiomac.2023.123476
    With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.
    Matched MeSH terms: Technology
  5. Kasavan S, Yusoff S, Guan NC, Zaman NSK, Fakri MFR
    Environ Sci Pollut Res Int, 2021 Sep;28(33):44780-44794.
    PMID: 34235692 DOI: 10.1007/s11356-021-15303-5
    Researchers have broadly studied textile waste, but the research topics development and performance trends in this study area are still unclear. A bibliometric analysis was conducted to explore the global scientific literature to determine state of the art on textile waste over the past 16 years. Data of publications output are identified based on the Web of Science (from 2015 to 2020). This study used VOSviewer to analyse collaboration networks among authors, countries, institutions, and author's keywords in identifying five main clusters. A total of 3296 papers in textile waste research were identified. In this study, a total of 10451 authors were involved in textile waste research, and 36 authors among them published more than ten research publications in the period of this study. China has been in a top position in textile waste research moving from 3 output publications in 2005 to 91 output publications in 2020. Indian Institute of Technology System IIT System was ranked first in terms of the total publication number (85 publications, 2.45%). Textile wastewater and adsorption are the most commonly used keywords that reflect the current main research direction in this field and received more attention in recent years. Based on keyword cluster analysis outputs, textile waste research can be categorized into five types of clusters, namely (1) pollutant compositions, (2) component of textile wastewater, (3) treatment methods for textile wastewater, (4) effect mechanism of textile wastewater, and (5) recyclability of textile waste.
    Matched MeSH terms: Technology
  6. Cao J, Law SH, Samad ARBA, Mohamad WNBW, Wang J, Yang X
    Environ Sci Pollut Res Int, 2021 Sep;28(35):48053-48069.
    PMID: 33904131 DOI: 10.1007/s11356-021-13828-3
    China's green growth has shown a trend of fluctuation year by year. Simultaneously, Chinese local governments have pursued simple economic growth driven by the interests of "political competition" for a long time, while the supervision of the ecological environment has been loosened and tightened. In this environment, financial development and technological innovation may easily become the accelerator of this phenomenon, thus exacerbating the fluctuation of green growth. To deeply excavate the key factors to achieve stable and sustained growth of green economy, based on the annual panel data of 30 provinces in China from 2011 to 2018, this paper studies the impact of financial development and technological innovation on the volatility of green growth using dynamic system GMM method. The findings of this paper are shown as follows: First, the expansion of financial institutions' scale will significantly enhance the volatility of green growth. Second, the increase in the scale of the stock market will also significantly cause green growth fluctuations. Third, the interaction between financial development and technological innovation can significantly weaken the volatility of green growth. Fourth, financial development measured by stock market indicators is more efficient than financial development measured by financial institutions indicators to curb the volatility of green growth. Fifth, the fluctuation of green growth in the previous period will reduce the volatility of green growth in the current period. This study provides new evidence for exploring the power source to promote the stability and sustainable growth of the green economy in the special stage of financial and technological integration. Controlling the development scale of financial institutions and removing their state preferences, expanding the development of capital markets, and deepening the integration of financial development and technological innovation are conducive to achieve stable green growth.
    Matched MeSH terms: Technology
  7. Shair F, Shaorong S, Kamran HW, Hussain MS, Nawaz MA, Nguyen VC
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20822-20838.
    PMID: 33405126 DOI: 10.1007/s11356-020-11938-y
    This paper investigates the efficiency and total factor productivity (TFP) growth of the Pakistani banking industry and determines the impact of risk and competition on the efficiency and TFP growth. The data envelopment analysis (DEA)-based Malmquist productivity index is used to measure efficiency and TFP growth of the Pakistani banking industry. The generalized method of moments (GMM) model is applied to observe the impact of risk and competition on efficiency and TFP growth. The motivation behind the use of GMM model is its ability to overcome unobserved heterogeneity, autocorrelation, and endogeneity issues. The results of the study show that the credit and liquidity risks have positive while insolvency risk has negative effect on the efficiency and TFP growth. The competition leads to improve technological efficiency but declines the technical efficiency growth. Among other explanatory variables, operational cost management, banking sector development, GDP growth rate, and infrastructure development show significant relationships with various efficiencies and TFP growth. The banks also facilitate for the purchase of carbon-intensive products in order to reduce carbon emissions. Strong banking development successfully allocate their financial resources for the development of energy-efficient technology while banking sector development is found to be negatively related with environmental sustainability. The strong banking sector possesses a significant negative influence on carbon reduction and environmental degradation.
    Matched MeSH terms: Technology
  8. Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):11004-11026.
    PMID: 35001268 DOI: 10.1007/s11356-021-17992-4
    Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.
    Matched MeSH terms: Technology
  9. Omoregie AI, Muda K, Ojuri OO, Hong CY, Pauzi FM, Ali NSBA
    Environ Sci Pollut Res Int, 2022 Dec;29(60):89899-89922.
    PMID: 36369439 DOI: 10.1007/s11356-022-24046-w
    Microbially induced carbonate precipitation (MICP) is a remarkable method that creates sustainable cementitious binding material for use in geotechnical/structural engineering and environmental engineering. This is due to the increasing demand for alternative environmentally friendly technologies and materials that result in minimal or zero carbon footprint. In contrast to the previously published literature, through bibliometric analysis, this review paper focuses on the current prospects and future research trends of MICP technology via the Scopus database and VOSviewer analysis. The objective of the study was to determine the annual publications and citations trend, most contributing countries, the leading journals, prolific authors, productive institutions, funding sponsors, trending author keywords, and research directions of MICP. There were a total of 1058 articles published from 2001 to 2021 on MICP. The result demonstrated that the volume of publications is increasing. China, Construction and Building Materials, Satoru Kawasaki, Nanyang Technological University, and the National Natural Science Foundation of China are the leading country, journal, author, institution, and funding sponsor in terms of total publications. Through the co-occurrence analysis of the author keywords, MICP was revealed to be the most frequently used author keyword with 121 occurrences, a total link strength of 213, and 152 links to other author keywords. Furthermore, co-occurrence analysis of text data revealed that researchers are concentrating on four important research areas: precipitation, MICP, compressive strength, and biomineralization. This review can provide information to researchers that can lead to novel ideas and research collaboration or engagement on MICP technology.
    Matched MeSH terms: Technology
  10. Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, et al.
    J Drug Target, 2023 Apr;31(4):369-389.
    PMID: 36721905 DOI: 10.1080/1061186X.2023.2175833
    The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
    Matched MeSH terms: Technology
  11. Majrashi MAA, Bairwan RD, Mushtaq RY, Khalil HPSA, Badr MY, Alissa M, et al.
    Int J Biol Macromol, 2024 May;266(Pt 2):131333.
    PMID: 38574916 DOI: 10.1016/j.ijbiomac.2024.131333
    This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.
    Matched MeSH terms: Green Chemistry Technology
  12. Za'im Sahul Hameed M, Nordin R, Ismail A, Zulkifley MA, Sham ASH, Sabudin RZAR, et al.
    Front Public Health, 2023;11:1199234.
    PMID: 38045974 DOI: 10.3389/fpubh.2023.1199234
    INTRODUCTION: Unmanned aerial vehicles (UAVs) are used for commercial, medical, public safety, and scientific research purposes in various countries.

    METHODS: This study aimed to explore the acceptance of medical delivery drones among medical practitioners as well as the public community in Malaysia using a knowledge, attitude, and perception (KAP) model and statistical analysis to decrease uncertainty. Bivariate and multivariate analyses of the results were performed in SPSS.

    RESULTS: A total of 639 respondents took part in the survey, of which 557 complete responses were finally analyzed. The results showed that the overall acceptance rate for medical delivery drones was positive. The acceptance rate was significantly correlated with knowledge, attitude, and perception scores but not with sociodemographic factors.

    DISCUSSION: Raising awareness and educating the medical as well as public communities regarding the potential role and benefits of drones are therefore important in garnering support for drone usage for medical purposes.

    Matched MeSH terms: Technology
  13. Adebayo TS, Rjoub H, Akadiri SS, Oladipupo SD, Sharif A, Adeshola I
    Environ Sci Pollut Res Int, 2022 Apr;29(16):24248-24260.
    PMID: 34822076 DOI: 10.1007/s11356-021-17524-0
    In the face of mounting climate change challenges, reducing emissions has emerged as a key driver of environmental sustainability and sustainable growth. Despite the fact that research has been conducted on the environmental Kuznets curve (EKC), few researchers have analyzed this in the light of economic complexity. Thus, the current research assesses the effect of economic complexity on CO2 emissions in the MINT nations while taking into account the role of financial development, economic growth, and energy consumption for the period between 1990 and 2018. Using the novel method of moments quantile regression (MMQR) with fixed effects, an inverted U-shape interrelationship is found between economic growth and CO2 emissions, thus validating the EKC hypothesis. Energy consumption and economic complexity increase CO2 emissions significantly from the 1st to 9th quantiles. Furthermore, there is no significant interconnection between financial development and CO2 emissions across all quantiles (1st to 9th). The outcomes of the causality test reveal a feedback causal connection between economic growth and CO2, while a unidirectional causality is established from economic complexity and energy use to CO2 emissions in the MINT nations. Based on the findings, we believe that governments should stimulate the financial sector to provide domestic credit facilities to industrialists, investors, and other business enterprises on more favorable terms so that innovative technologies for environmental protection can be implemented with other policy recommendations.
    Matched MeSH terms: Technology
  14. Zehra S, Faseeha U, Syed HJ, Samad F, Ibrahim AO, Abulfaraj AW, et al.
    Sensors (Basel), 2023 Jun 05;23(11).
    PMID: 37300067 DOI: 10.3390/s23115340
    Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.
    Matched MeSH terms: Technology
  15. Jabeen T, Jabeen I, Ashraf H, Jhanjhi NZ, Yassine A, Hossain MS
    Sensors (Basel), 2023 May 25;23(11).
    PMID: 37299782 DOI: 10.3390/s23115055
    The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.
    Matched MeSH terms: Wireless Technology
  16. Almazroi AA, Alqarni MA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(10):e0292690.
    PMID: 37889892 DOI: 10.1371/journal.pone.0292690
    The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.
    Matched MeSH terms: Wireless Technology
  17. Md Fadzil NH, Shahar S, Singh DKA, Rajikan R, Vanoh D, Mohamad Ali N, et al.
    Geriatr Gerontol Int, 2024 Mar;24(3):251-262.
    PMID: 38329011 DOI: 10.1111/ggi.14814
    The adoption of information and communication technology (ICT) by older adults with cognitive frailty and impairment is beneficial to support aging in place and promote healthy aging. However, data are scarce regarding the use of ICT by this demographic in comparison with other age groups. This bibliometric analysis was aimed at systematically mapping the literature on ICT-related research on older adults with cognitive frailty and cognitive impairment to provide insights into research trends, patterns and knowledge gaps. Data were extracted from the Web of Science database, which identified 324 publications between 1980 and 2023. Performance analysis and science mapping were carried out using Microsoft® Excel, VOSViewer and Harzing's Publish or Perish. The analysis showed an upsurge in the research output trend over time. Notable journals, authors, citations, nations and research areas have been documented. Four key clusters were identified, including: (i) caregiver concern, support and involvement; (ii) technology as a tool for cognitive training and cognitive rehabilitation; (iii) cognitive improvement; and (iv) the use of technology for prevention and self-management. The findings derived from this analysis provide an appropriate reference for future researchers to bridge the gap in ICT-related studies among this population, and distinguish the relevant articles that are required for further investigation. These include the need for further long-term research, the incorporation of ICT-based approaches to counter cognitive frailty and the importance of multidomain telehealth interventions. Geriatr Gerontol Int 2024; 24: 251-262.
    Matched MeSH terms: Technology
  18. Saharudin DM, Jeswani HK, Azapagic A
    Sci Total Environ, 2024 Apr 01;919:170266.
    PMID: 38253094 DOI: 10.1016/j.scitotenv.2024.170266
    Biochar used for soil amendment is considered a viable negative emissions technology as it can be produced easily from a wide range of biomass feedstocks, while offering numerous potential agricultural benefits. This research is the first to present a comprehensive sustainability assessment of large-scale biochar production and application in Malaysia. The five feedstocks considered comprise the country's most abundant agricultural wastes from palm oil (empty fruit bunches, fibres, palm fronds and shells) and rice (straw) plantations. Combined with process simulation, life cycle assessment and life cycle costing are used to assess the sustainability of biochar production via slow pyrolysis at different temperatures (300-600 °C), considering two functional units: i) production and application of 1 t of biochar; and ii) removal of 1 t of CO2from the atmosphere. The cradle-to-grave system boundary comprises all life cycle stages from biomass acquisition to biochar use for soil amendment. The positive impacts of the latter, such as carbon sequestration, fertiliser avoidance and reduction in soil N2O emissions, are also included. The global warming potential (GWP) is net-negative in all scenarios, ranging from -436 to -2,085 kg CO2 eq./t biochar and -660 to -933 kg CO2 eq./t CO2 removed. Per t of biochar, the systems with shells have the lowest GWP and those with straw the highest, all showing better performance if produced at higher pyrolysis temperatures. However, the temperature trend is opposite for all other 17 impacts considered, with fibres being the best option and fronds the worst for most categories. Per t CO2 removed, fronds have the highest impact in eight categories, including GWP, and shells the lowest in most categories. All impacts are lower for biochar production at higher temperatures. The main hotspot is the pyrolysis process, influencing the majority of impact categories and contributing 66-75 % to the life cycle costs. The costs range from US$116-197/t biochar and US$60-204/t CO2 removed. The least expensive systems per t biochar are those with straws and per t CO2 removed those with shells, while fronds are the worst option economically for both functional units. Utilising all available feedstocks could remove 6-12.4 Mt of CO2 annually, reducing the national emissions from the agricultural sector by up to 54 % and saving US$36.05 M annually on fertilisers imports. These results will be of interest to policy makers in Malaysia and other regions with abundant agricultural wastes.
    Matched MeSH terms: Technology
  19. Umar M, Ahmad A, Sroufe R, Muhammad Z
    Environ Sci Pollut Res Int, 2024 Feb;31(10):15026-15038.
    PMID: 38285260 DOI: 10.1007/s11356-024-31952-8
    Enterprises across the globe are facing increasing pressure to effectively utilize resources and reduce costs through green supply chain practices. Emerging technology, such as blockchain technology which enables green practices, has become a contemporary industrial paradigm. However, enterprises need to build green intellectual capital to implement blockchain technology, which can be key to realizing green supply chain practices. This research examines the impact of green intellectual capital (GIC) on blockchain technology and its role in implementing green manufacturing to achieve sustainability. Partial least squares structural equation modeling was utilized for assessing the proposed hypotheses, and cross-sectional data was accumulated from manufacturing firms. As per the results, GIC, which includes green human capital, green structural capital, and green relational capital has a crucial role in the implementation of blockchain technology. The outcomes also indicated that the adoption of blockchain technology significantly influences green manufacturing. Moreover, green manufacturing (GM) has a substantial role in improving business sustainability. This empirical research provides a deeper understanding of how GIC and blockchain technology contribute to the implementation of GM. This research also provides guidelines that managers, policymakers, and producers can use to facilitate the incorporation of GM practice into business activities.
    Matched MeSH terms: Technology
  20. Qazi HH, bin Mohammad AB, Akram M
    Sensors (Basel), 2012 Nov 29;12(12):16522-56.
    PMID: 23443392 DOI: 10.3390/s121216522
    Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described.
    Matched MeSH terms: Fiber Optic Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links