Displaying publications 261 - 280 of 799 in total

Abstract:
Sort:
  1. Kasavan S, Yusoff S, Guan NC, Zaman NSK, Fakri MFR
    Environ Sci Pollut Res Int, 2021 Sep;28(33):44780-44794.
    PMID: 34235692 DOI: 10.1007/s11356-021-15303-5
    Researchers have broadly studied textile waste, but the research topics development and performance trends in this study area are still unclear. A bibliometric analysis was conducted to explore the global scientific literature to determine state of the art on textile waste over the past 16 years. Data of publications output are identified based on the Web of Science (from 2015 to 2020). This study used VOSviewer to analyse collaboration networks among authors, countries, institutions, and author's keywords in identifying five main clusters. A total of 3296 papers in textile waste research were identified. In this study, a total of 10451 authors were involved in textile waste research, and 36 authors among them published more than ten research publications in the period of this study. China has been in a top position in textile waste research moving from 3 output publications in 2005 to 91 output publications in 2020. Indian Institute of Technology System IIT System was ranked first in terms of the total publication number (85 publications, 2.45%). Textile wastewater and adsorption are the most commonly used keywords that reflect the current main research direction in this field and received more attention in recent years. Based on keyword cluster analysis outputs, textile waste research can be categorized into five types of clusters, namely (1) pollutant compositions, (2) component of textile wastewater, (3) treatment methods for textile wastewater, (4) effect mechanism of textile wastewater, and (5) recyclability of textile waste.
    Matched MeSH terms: Technology
  2. Cao J, Law SH, Samad ARBA, Mohamad WNBW, Wang J, Yang X
    Environ Sci Pollut Res Int, 2021 Sep;28(35):48053-48069.
    PMID: 33904131 DOI: 10.1007/s11356-021-13828-3
    China's green growth has shown a trend of fluctuation year by year. Simultaneously, Chinese local governments have pursued simple economic growth driven by the interests of "political competition" for a long time, while the supervision of the ecological environment has been loosened and tightened. In this environment, financial development and technological innovation may easily become the accelerator of this phenomenon, thus exacerbating the fluctuation of green growth. To deeply excavate the key factors to achieve stable and sustained growth of green economy, based on the annual panel data of 30 provinces in China from 2011 to 2018, this paper studies the impact of financial development and technological innovation on the volatility of green growth using dynamic system GMM method. The findings of this paper are shown as follows: First, the expansion of financial institutions' scale will significantly enhance the volatility of green growth. Second, the increase in the scale of the stock market will also significantly cause green growth fluctuations. Third, the interaction between financial development and technological innovation can significantly weaken the volatility of green growth. Fourth, financial development measured by stock market indicators is more efficient than financial development measured by financial institutions indicators to curb the volatility of green growth. Fifth, the fluctuation of green growth in the previous period will reduce the volatility of green growth in the current period. This study provides new evidence for exploring the power source to promote the stability and sustainable growth of the green economy in the special stage of financial and technological integration. Controlling the development scale of financial institutions and removing their state preferences, expanding the development of capital markets, and deepening the integration of financial development and technological innovation are conducive to achieve stable green growth.
    Matched MeSH terms: Technology
  3. Shair F, Shaorong S, Kamran HW, Hussain MS, Nawaz MA, Nguyen VC
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20822-20838.
    PMID: 33405126 DOI: 10.1007/s11356-020-11938-y
    This paper investigates the efficiency and total factor productivity (TFP) growth of the Pakistani banking industry and determines the impact of risk and competition on the efficiency and TFP growth. The data envelopment analysis (DEA)-based Malmquist productivity index is used to measure efficiency and TFP growth of the Pakistani banking industry. The generalized method of moments (GMM) model is applied to observe the impact of risk and competition on efficiency and TFP growth. The motivation behind the use of GMM model is its ability to overcome unobserved heterogeneity, autocorrelation, and endogeneity issues. The results of the study show that the credit and liquidity risks have positive while insolvency risk has negative effect on the efficiency and TFP growth. The competition leads to improve technological efficiency but declines the technical efficiency growth. Among other explanatory variables, operational cost management, banking sector development, GDP growth rate, and infrastructure development show significant relationships with various efficiencies and TFP growth. The banks also facilitate for the purchase of carbon-intensive products in order to reduce carbon emissions. Strong banking development successfully allocate their financial resources for the development of energy-efficient technology while banking sector development is found to be negatively related with environmental sustainability. The strong banking sector possesses a significant negative influence on carbon reduction and environmental degradation.
    Matched MeSH terms: Technology
  4. Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):11004-11026.
    PMID: 35001268 DOI: 10.1007/s11356-021-17992-4
    Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.
    Matched MeSH terms: Technology
  5. Omoregie AI, Muda K, Ojuri OO, Hong CY, Pauzi FM, Ali NSBA
    Environ Sci Pollut Res Int, 2022 Dec;29(60):89899-89922.
    PMID: 36369439 DOI: 10.1007/s11356-022-24046-w
    Microbially induced carbonate precipitation (MICP) is a remarkable method that creates sustainable cementitious binding material for use in geotechnical/structural engineering and environmental engineering. This is due to the increasing demand for alternative environmentally friendly technologies and materials that result in minimal or zero carbon footprint. In contrast to the previously published literature, through bibliometric analysis, this review paper focuses on the current prospects and future research trends of MICP technology via the Scopus database and VOSviewer analysis. The objective of the study was to determine the annual publications and citations trend, most contributing countries, the leading journals, prolific authors, productive institutions, funding sponsors, trending author keywords, and research directions of MICP. There were a total of 1058 articles published from 2001 to 2021 on MICP. The result demonstrated that the volume of publications is increasing. China, Construction and Building Materials, Satoru Kawasaki, Nanyang Technological University, and the National Natural Science Foundation of China are the leading country, journal, author, institution, and funding sponsor in terms of total publications. Through the co-occurrence analysis of the author keywords, MICP was revealed to be the most frequently used author keyword with 121 occurrences, a total link strength of 213, and 152 links to other author keywords. Furthermore, co-occurrence analysis of text data revealed that researchers are concentrating on four important research areas: precipitation, MICP, compressive strength, and biomineralization. This review can provide information to researchers that can lead to novel ideas and research collaboration or engagement on MICP technology.
    Matched MeSH terms: Technology
  6. Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, et al.
    J Drug Target, 2023 Apr;31(4):369-389.
    PMID: 36721905 DOI: 10.1080/1061186X.2023.2175833
    The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
    Matched MeSH terms: Technology
  7. Adebayo TS, Rjoub H, Akadiri SS, Oladipupo SD, Sharif A, Adeshola I
    Environ Sci Pollut Res Int, 2022 Apr;29(16):24248-24260.
    PMID: 34822076 DOI: 10.1007/s11356-021-17524-0
    In the face of mounting climate change challenges, reducing emissions has emerged as a key driver of environmental sustainability and sustainable growth. Despite the fact that research has been conducted on the environmental Kuznets curve (EKC), few researchers have analyzed this in the light of economic complexity. Thus, the current research assesses the effect of economic complexity on CO2 emissions in the MINT nations while taking into account the role of financial development, economic growth, and energy consumption for the period between 1990 and 2018. Using the novel method of moments quantile regression (MMQR) with fixed effects, an inverted U-shape interrelationship is found between economic growth and CO2 emissions, thus validating the EKC hypothesis. Energy consumption and economic complexity increase CO2 emissions significantly from the 1st to 9th quantiles. Furthermore, there is no significant interconnection between financial development and CO2 emissions across all quantiles (1st to 9th). The outcomes of the causality test reveal a feedback causal connection between economic growth and CO2, while a unidirectional causality is established from economic complexity and energy use to CO2 emissions in the MINT nations. Based on the findings, we believe that governments should stimulate the financial sector to provide domestic credit facilities to industrialists, investors, and other business enterprises on more favorable terms so that innovative technologies for environmental protection can be implemented with other policy recommendations.
    Matched MeSH terms: Technology
  8. Zehra S, Faseeha U, Syed HJ, Samad F, Ibrahim AO, Abulfaraj AW, et al.
    Sensors (Basel), 2023 Jun 05;23(11).
    PMID: 37300067 DOI: 10.3390/s23115340
    Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.
    Matched MeSH terms: Technology
  9. Jabeen T, Jabeen I, Ashraf H, Jhanjhi NZ, Yassine A, Hossain MS
    Sensors (Basel), 2023 May 25;23(11).
    PMID: 37299782 DOI: 10.3390/s23115055
    The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.
    Matched MeSH terms: Wireless Technology
  10. Almazroi AA, Alqarni MA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(10):e0292690.
    PMID: 37889892 DOI: 10.1371/journal.pone.0292690
    The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.
    Matched MeSH terms: Wireless Technology
  11. Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81474-81492.
    PMID: 36689112 DOI: 10.1007/s11356-023-25321-0
    The bi-fluid photovoltaic thermal (PVT) collector was introduced to provide more heating options along with improved cooling capabilities for the PV module. Since its introduction, this type of PVT system has been investigated thoroughly in various original works. In this review paper, we intend to put the concept and applications of this technology into question and revise the main achievements and discoveries through research and development with a focus on climatic and operational parameters. The paper encompasses a critical review of the discussed research and future directions for PVT collectors. The main utilized operational modes are discussed in detail, which are (i) water used in both channels, (ii) water in one channel and air in the other, and (iii) air in both channels. The modes were found to lead to different enhancement and performance effects for the utilized photovoltaic modules. The impact of mass flow rate was also taken by keeping one working fluid constant while varying the other to obtain its impact on the energy and exergy efficiency of the collector. In some cases, the fluids were run simultaneously and, in other cases, independently.
    Matched MeSH terms: Technology
  12. Qadeer K, Al-Hinai A, Chuah LF, Sial NR, Al-Muhtaseb AH, Al-Abri R, et al.
    Chemosphere, 2023 Sep;335:139007.
    PMID: 37253401 DOI: 10.1016/j.chemosphere.2023.139007
    Industrial revolution on the back of fossil fuels has costed humanity higher temperatures on the planet due to ever-growing concentration of carbon dioxide emissions in Earth's atmosphere. To tackle global warming demand for renewable energy sources continues to increase. Along renewables, there has been a growing interest in converting carbon dioxide to methanol, which can be used as a fuel or a feedstock for producing chemicals. The current review study provides a comprehensive overview of the recent advancements, challenges and future prospects of methanol production and purification via membrane-based technology. Traditional downstream processes for methanol production such as distillation and absorption have several drawbacks, including high energy consumption and environmental concerns. In comparison to conventional technologies, membrane-based separation techniques have emerged as a promising alternative for producing and purifying methanol. The review highlights recent developments in membrane-based methanol production and purification technology, including using novel membrane materials such as ceramic, polymeric and mixed matrix membranes. Integrating photocatalytic processes with membrane separation has been investigated to improve the conversion of carbon dioxide to methanol. Despite the potential benefits of membrane-based systems, several challenges need to be addressed. Membrane fouling and scaling are significant issues that can reduce the efficiency and lifespan of the membranes. The cost-effectiveness of membrane-based systems compared to traditional methods is a critical consideration that must be evaluated. In conclusion, the review provides insights into the current state of membrane-based technology for methanol production and purification and identifies areas for future research. The development of high-performance membranes and the optimization of membrane-based processes are crucial for improving the efficiency and cost-effectiveness of this technology and for advancing the goal of sustainable energy production.
    Matched MeSH terms: Technology
  13. Chang XL, Chee PS, Lim EH
    Sci Rep, 2023 Jun 15;13(1):9678.
    PMID: 37322083 DOI: 10.1038/s41598-023-36335-6
    This paper presents a 35.0 × 35.0 × 2.7 mm3 compact, low-profile, and lightweight wearable antenna for on-body wireless power transfer. The proposed antenna can be easily printed on a piece of flexible tattoo paper and transformed onto a PDMS substrate, making the entire antenna structure conform to the human body for achieving a better user experience. Here, a layer of frequency selective surface (FSS) is inserted in between the antenna and human tissue, which has successfully reduced the loading effects of the tissue, with 13.8 dB improvement on the antenna gain. Also, the operating frequency of the rectenna is not affected much by deformation. To maximize the RF-DC conversion efficiency, a matching loop, a matching stub, and two coupled lines are integrated with the antenna for tuning the rectenna so that a wide bandwidth (~ 24%) can be achieved without the use of any external matching networks. Measurement results show that the proposed rectenna can achieve a maximum conversion efficiency of 59.0% with an input power of 5.75 μW/cm2 and can even exceed 40% for a low input power of 1.0 μW/cm2 with a 20 kΩ resistive load, while many other reported rectennas can only achieve a high PCE at a high power density level, which is not always practical for a wearable antenna.
    Matched MeSH terms: Wireless Technology
  14. Devan PAM, Ibrahim R, Omar M, Bingi K, Abdulrab H
    Sensors (Basel), 2023 Jul 07;23(13).
    PMID: 37448072 DOI: 10.3390/s23136224
    A novel hybrid Harris Hawk-Arithmetic Optimization Algorithm (HHAOA) for optimizing the Industrial Wireless Mesh Networks (WMNs) and real-time pressure process control was proposed in this research article. The proposed algorithm uses inspiration from Harris Hawk Optimization and the Arithmetic Optimization Algorithm to improve position relocation problems, premature convergence, and the poor accuracy the existing techniques face. The HHAOA algorithm was evaluated on various benchmark functions and compared with other optimization algorithms, namely Arithmetic Optimization Algorithm, Moth Flame Optimization, Sine Cosine Algorithm, Grey Wolf Optimization, and Harris Hawk Optimization. The proposed algorithm was also applied to a real-world industrial wireless mesh network simulation and experimentation on the real-time pressure process control system. All the results demonstrate that the HHAOA algorithm outperforms different algorithms regarding mean, standard deviation, convergence speed, accuracy, and robustness and improves client router connectivity and network congestion with a 31.7% reduction in Wireless Mesh Network routers. In the real-time pressure process, the HHAOA optimized Fractional-order Predictive PI (FOPPI) Controller produced a robust and smoother control signal leading to minimal peak overshoot and an average of a 53.244% faster settling. Based on the results, the algorithm enhanced the efficiency and reliability of industrial wireless networks and real-time pressure process control systems, which are critical for industrial automation and control applications.
    Matched MeSH terms: Wireless Technology
  15. Lim AS, Lee SWH
    Simul Healthc, 2022 Apr 01;17(2):131-135.
    PMID: 33273417 DOI: 10.1097/SIH.0000000000000526
    INTRODUCTION: Objective Structured Clinical Examinations (OSCEs) are an accepted technique for evaluation of clinical competence in healthcare. However, the economic imperative requires faculty to control cost, using innovative educational strategies such as virtual simulation. The objective of this study was to evaluate the cost implications of implementing an online interactive learning module [Monash OSCE Virtual Experience (MOVE)].

    METHODS: All fourth-year pharmacy students enrolled in Monash University in 2017 were provided access to MOVE. Cost-minimization analyses were performed to evaluate the cost of introducing MOVE in the pharmacy course using the smallest cohort size (Malaysia campus) of 40 students as the base case. We also determined under what circumstances MOVE would be more cost-effective, considering the different operational situations such as when student numbers increased or when the number of simulation modules created were increased.

    RESULTS: The overall cost of setup and implementation of MOVE in the first year of implementation among 40 students was US $94.38 per student. In comparison, the face-to-face workshop cost was US $64.14 per student. On the second year of implementation, the ongoing cost of operation of MOVE was US $32.86 per student compared with US $58.97 per student using face-to-face workshop. A net benefit using MOVE was observed after the third year of implementation. Larger savings were noted when the cohort size extends larger than 100 students.

    CONCLUSIONS: Monash OSCE Virtual Experience was a flexible and cost-effective approach to aid students in preparation for an OSCE and enhanced students' learning experience. The wider applicability of these findings will need to be explored in other settings.

    Matched MeSH terms: Technology
  16. Sitinjak C, Simic V, Ismail R, Bacanin N, Musselwhite C
    Environ Sci Pollut Res Int, 2023 Aug;30(37):87286-87299.
    PMID: 37422560 DOI: 10.1007/s11356-023-28554-1
    Effective end-of-life vehicle (ELV) management is crucial for minimizing the environmental and health impacts of Indonesia's growing automotive industry. However, proper ELV management has received limited attention. To bridge this gap, we conducted a qualitative study to identify barriers to effective ELV management in Indonesia's automotive sector. Through in-depth interviews with key stakeholders and a strengths, weaknesses, opportunities, and threats analysis, we identified internal and external factors influencing ELV management. Our findings reveal major barriers, including inadequate government regulation and enforcement, insufficient infrastructure and technology, low education and awareness, and a lack of financial incentives. We also identified internal factors such as limited infrastructure, inadequate strategic planning, and challenges in waste management and cost collection methods. Based on these findings, we recommend a comprehensive and integrated approach to ELV management involving enhanced coordination among government, industry, and stakeholders. The government should enforce regulations and provide financial incentives to encourage proper ELV management practices. Industry players should invest in technology and infrastructure to support effective ELV treatment. By addressing these barriers and implementing our recommendations, policymakers can develop sustainable ELV management policies and decisions in Indonesia's fast-paced automotive sector. Our study contributes valuable insights to guide the development of effective strategies for ELV management and sustainability in Indonesia.
    Matched MeSH terms: Technology
  17. Aznan A, Gonzalez Viejo C, Pang A, Fuentes S
    Food Res Int, 2023 Oct;172:113105.
    PMID: 37689840 DOI: 10.1016/j.foodres.2023.113105
    The increase in rice consumption and demand for high-quality rice is impacted by the growth of socioeconomic status in developing countries and consumer awareness of the health benefits of rice consumption. The latter aspects drive the need for rapid, low-cost, and reliable quality assessment methods to produce high-quality rice according to consumer preference. This is important to ensure the sustainability of the rice value chain and, therefore, accelerate the rice industry toward digital agriculture. This review article focuses on the measurements of the physicochemical and sensory quality of rice, including new and emerging technology advances, particularly in the development of low-cost, non-destructive, and rapid digital sensing techniques to assess rice quality traits and consumer perceptions. In addition, the prospects for potential applications of emerging technologies (i.e., sensors, computer vision, machine learning, and artificial intelligence) to assess rice quality and consumer preferences are discussed. The integration of these technologies shows promising potential in the forthcoming to be adopted by the rice industry to assess rice quality traits and consumer preferences at a lower cost, shorter time, and more objectively compared to the traditional approaches.
    Matched MeSH terms: Technology
  18. Rehman A, Abbas S, Khan MA, Ghazal TM, Adnan KM, Mosavi A
    Comput Biol Med, 2022 Nov;150:106019.
    PMID: 36162198 DOI: 10.1016/j.compbiomed.2022.106019
    In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Machine learning (ML) and blockchain (BC) technologies have significantly enhanced the capabilities and facilities of healthcare 5.0, spawning a new area known as "Smart Healthcare." By identifying concerns early, a smart healthcare system can help avoid long-term damage. This will enhance the quality of life for patients while reducing their stress and healthcare costs. The IoMT enables a range of functionalities in the field of information technology, one of which is smart and interactive health care. However, combining medical data into a single storage location to train a powerful machine learning model raises concerns about privacy, ownership, and compliance with greater concentration. Federated learning (FL) overcomes the preceding difficulties by utilizing a centralized aggregate server to disseminate a global learning model. Simultaneously, the local participant keeps control of patient information, assuring data confidentiality and security. This article conducts a comprehensive analysis of the findings on blockchain technology entangled with federated learning in healthcare. 5.0. The purpose of this study is to construct a secure health monitoring system in healthcare 5.0 by utilizing a blockchain technology and Intrusion Detection System (IDS) to detect any malicious activity in a healthcare network and enables physicians to monitor patients through medical sensors and take necessary measures periodically by predicting diseases. The proposed system demonstrates that the approach is optimized effectively for healthcare monitoring. In contrast, the proposed healthcare 5.0 system entangled with FL Approach achieves 93.22% accuracy for disease prediction, and the proposed RTS-DELM-based secure healthcare 5.0 system achieves 96.18% accuracy for the estimation of intrusion detection.
    Matched MeSH terms: Technology
  19. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
    Matched MeSH terms: Technology
  20. Abdul Jabar MH, Srivastava R, Abdul Manaf N, Thangalazhy-Gopakumar S, Ab Latif FE, Luu MT, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(55):116934-116951.
    PMID: 37221293 DOI: 10.1007/s11356-023-27641-7
    Solar photovoltaic-thermal hybrid with phase change material (PVT-PCM) emerges as an intelligent game changer to stimulate the clean, reliable, and affordable renewable energy technology. This PVT-PCM technology can be manipulated into generating both electricity and thermal energy that feature its practicality for residential and industrial applications. Hybridized of PCM into PVT design adds value to existing architecture with its capability to store excess heat that can be used during insufficient solar irradiation. Present work gives overview of the PVT-PCM system on technology innovation toward commercialization (viz, solar end game) subjected to bibliometric analysis, research and development evolution, and patent activity. A consolidation of these review articles was decluttered to focus on the performance and efficiency of PVT-PCM technology based on the fact that commercialization is ready once the technology is completed and qualified (at technology readiness level, TRL: 8). Economic review was conducted to understand the feasibility of the existing solar technologies and how it affects the PVT-PCM market price. Based on the contemporary findings, promising performance of PVT-PCM technology has underpinned its feasibility and technology readiness. China has predominant local and international framework and expected to be the PVT-PCM technology trendsetter in the next years through its strong international collaborative projects and pioneer in PVT-PCM patent filing. This present work underscores the solar end-game strategy and recommendation to create a path forward to achieve clean energy transition. Though, as to the date of submission of this article, no industry  has found to manufacture/sell this hybrid technology in the market.
    Matched MeSH terms: Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links