Displaying publications 261 - 280 of 282 in total

Abstract:
Sort:
  1. Dehzangi A, Phon-Amnuaisuk S
    Protein Pept Lett, 2011 Feb;18(2):174-85.
    PMID: 21054271
    One of the most important goals in bioinformatics is the ability to predict tertiary structure of a protein from its amino acid sequence. In this paper, new feature groups based on the physical and physicochemical properties of amino acids (size of the amino acids' side chains, predicted secondary structure based on normalized frequency of β-Strands, Turns, and Reverse Turns) are proposed to tackle this task. The proposed features are extracted using a modified feature extraction method adapted from Dubchak et al. To study the effectiveness of the proposed features and the modified feature extraction method, AdaBoost.M1, Multi Layer Perceptron (MLP), and Support Vector Machine (SVM) that have been commonly and successfully applied to the protein folding problem are employed. Our experimental results show that the new feature groups altogether with the modified feature extraction method are capable of enhancing the protein fold prediction accuracy better than the previous works found in the literature.
    Matched MeSH terms: Artificial Intelligence
  2. Loo CK, Rajeswari M, Rao MV
    IEEE Trans Neural Netw, 2004 Nov;15(6):1378-95.
    PMID: 15565767
    This paper presents two novel approaches to determine optimum growing multi-experts network (GMN) structure. The first method called direct method deals with expertise domain and levels in connection with local experts. The growing neural gas (GNG) algorithm is used to cluster the local experts. The concept of error distribution is used to apportion error among the local experts. After reaching the specified size of the network, redundant experts removal algorithm is invoked to prune the size of the network based on the ranking of the experts. However, GMN is not ergonomic due to too many network control parameters. Therefore, a self-regulating GMN (SGMN) algorithm is proposed. SGMN adopts self-adaptive learning rates for gradient-descent learning rules. In addition, SGMN adopts a more rigorous clustering method called fully self-organized simplified adaptive resonance theory in a modified form. Experimental results show SGMN obtains comparative or even better performance than GMN in four benchmark examples, with reduced sensitivity to learning parameters setting. Moreover, both GMN and SGMN outperform the other neural networks and statistical models. The efficacy of SGMN is further justified in three industrial applications and a control problem. It provides consistent results besides holding out a profound potential and promise for building a novel type of nonlinear model consisting of several local linear models.
    Matched MeSH terms: Artificial Intelligence
  3. Kumar R, Khan FU, Sharma A, Aziz IB, Poddar NK
    Curr Med Chem, 2021 Apr 04.
    PMID: 33820515 DOI: 10.2174/0929867328666210405114938
    There is substantial progress in artificial intelligence (AI) algorithms and their medical sciences applications in the last two decades. AI-assisted programs have already been established for remotely health monitoring using sensors and smartphones. A variety of AI-based prediction models available for the gastrointestinal inflammatory, non-malignant diseases, and bowel bleeding using wireless capsule endoscopy, electronic medical records for hepatitis-associated fibrosis, pancreatic carcinoma using endoscopic ultrasounds. AI-based models may be of immense help for healthcare professionals in the identification, analysis, and decision support using endoscopic images to establish prognosis and risk assessment of patient's treatment using multiple factors. Although enough randomized clinical trials are warranted to establish the efficacy of AI-algorithms assisted and non-AI based treatments before approval of such techniques from medical regulatory authorities. In this article, available AI approaches and AI-based prediction models for detecting gastrointestinal, hepatic, and pancreatic diseases are reviewed. The limitation of AI techniques in such disease prognosis, risk assessment, and decision support are discussed.
    Matched MeSH terms: Artificial Intelligence
  4. Burki TK
    Lancet Haematol, 2021 Aug;8(8):e551.
    PMID: 34329575 DOI: 10.1016/S2352-3026(21)00215-5
    Matched MeSH terms: Artificial Intelligence
  5. Ahmad MH, Zezi AU, Anafi SB, Alhassan Z, Mohammed M, Danraka RN
    Data Brief, 2021 Jun;36:107155.
    PMID: 34041327 DOI: 10.1016/j.dib.2021.107155
    This article describes the dataset for the elucidation of the possible mechanisms of antidiarrhoeal actions of methanol leaves extract of Combretum hypopilinum (Diels) Combretaceae in mice. The plant has been used in traditional medicine to treat diarrhoea in Nigeria and other African countries. We introduce the data for the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum at 1,000 mg/kg investigated using charcoal meal test in mice with loperamide (5 mg/kg) as the standard antidiarrhoeal agent. To elucidate the possible mechanisms of its antidiarrhoeal action, naloxone (2 mg/kg), prazosin (1 mg/kg), yohimbine (2 mg/kg), propranolol (1 mg/kg), pilocarpine (1 mg/kg) and isosorbide dinitrate (150 mg/kg) were separately administered to different groups of mice 30 minutes before administration of the extract. Each mouse was dissected using dissecting set, and the small intestine was immediately removed from pylorus to caecum, placed lengthwise on moist filter paper and measured the distance travelled by charcoal relative to the length of the intestine using a calibrated ruler in centimetre. Besides, the peristaltic index and inhibition of charcoal movement of each animal were calculated and recorded. The methods for the data collection is similar to the one used to investigate the possible pathways involved in the antidiarrhoeal action of Combretum hypopilinum in mice in the research article by Ahmad et al. (2020) "Mechanisms of Antidiarrhoeal Activity of Methanol Leaf Extract of Combretum hypopilinum Diels (Combretaceae): Involvement of Opioidergic and (α1 and β)-Adrenergic Pathways" (https://doi.org/10.1016/j.jep.2020.113750) [1]. Therefore, this datasets could form a basis for in-depth research to elucidate further the pharmacological properties of the plant Combretum hypopilinum and its bioactive compounds to develop standardized herbal product and novel compound for management of diarrhoea. It could also be instrumental for evaluating the plant's pharmacological potentials using other computational-based and artificial intelligence approaches, including predictive modelling and simulation.
    Matched MeSH terms: Artificial Intelligence
  6. Low JSY, Thevarajah TM, Chang SW, Goh BT, Khor SM
    Crit Rev Biotechnol, 2020 Dec;40(8):1191-1209.
    PMID: 32811205 DOI: 10.1080/07388551.2020.1808582
    Cardiovascular disease is a major global health issue. In particular, acute myocardial infarction (AMI) requires urgent attention and early diagnosis. The use of point-of-care diagnostics has resulted in the improved management of cardiovascular disease, but a major drawback is that the performance of POC devices does not rival that of central laboratory tests. Recently, many studies and advances have been made in the field of surface-enhanced Raman scattering (SERS), including the development of POC biosensors that utilize this detection method. Here, we present a review of the strengths and limitations of these emerging SERS-based biosensors for AMI diagnosis. The ability of SERS to multiplex sensing against existing POC detection methods are compared and discussed. Furthermore, SERS calibration-free methods that have recently been explored to minimize the inconvenience and eliminate the limitations caused by the limited linear range and interassay differences found in the calibration curves are outlined. In addition, the incorporation of artificial intelligence (AI) in SERS techniques to promote multivariate analysis and enhance diagnostic accuracy are discussed. The future prospects for SERS-based POC devices that include wearable POC SERS devices toward predictive, personalized medicine following the Fourth Industrial Revolution are proposed.
    Matched MeSH terms: Artificial Intelligence
  7. Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK
    Cancer Lett, 2021 10 10;518:102-114.
    PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025
    This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
    Matched MeSH terms: Artificial Intelligence
  8. Abdulhay E, Mohammed MA, Ibrahim DA, Arunkumar N, Venkatraman V
    J Med Syst, 2018 Feb 17;42(4):58.
    PMID: 29455440 DOI: 10.1007/s10916-018-0912-y
    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
    Matched MeSH terms: Artificial Intelligence
  9. Taha BA, Al Mashhadany Y, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N
    Sensors (Basel), 2020 Nov 26;20(23).
    PMID: 33256085 DOI: 10.3390/s20236764
    Timely detection and diagnosis are essentially needed to guide outbreak measures and infection control. It is vital to improve healthcare quality in public places, markets, schools and airports and provide useful insights into the technological environment and help researchers acknowledge the choices and gaps available in this field. In this narrative review, the detection of coronavirus disease 2019 (COVID-19) technologies is summarized and discussed with a comparison between them from several aspects to arrive at an accurate decision on the feasibility of applying the best of these techniques in the biosensors that operate using laser detection technology. The collection of data in this analysis was done by using six reliable academic databases, namely, Science Direct, IEEE Xplore, Scopus, Web of Science, Google Scholar and PubMed. This review includes an analysis review of three highlights: evaluating the hazard of pandemic COVID-19 transmission styles and comparing them with Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) to identify the main causes of the virus spreading, a critical analysis to diagnose coronavirus disease 2019 (COVID-19) based on artificial intelligence using CT scans and CXR images and types of biosensors. Finally, we select the best methods that can potentially stop the propagation of the coronavirus pandemic.
    Matched MeSH terms: Artificial Intelligence
  10. Ferdowsi M, Kwan BH, Tan MP, Saedon NI, Subramaniam S, Abu Hashim NFI, et al.
    Biomed Eng Online, 2024 Mar 30;23(1):37.
    PMID: 38555421 DOI: 10.1186/s12938-024-01229-9
    BACKGROUND: The diagnostic test for vasovagal syncope (VVS), the most common cause of syncope is head-up tilt test (HUTT) assessment. During the test, subjects experienced clinical symptoms such as nausea, sweating, pallor, the feeling of palpitations, being on the verge of passing out, and fainting. The study's goal is to develop an algorithm to classify VVS patients based on physiological signals blood pressure (BP) and electrocardiography (ECG) obtained from the HUTT.

    METHODS: After 10 min of supine rest, the subject was tilted at a 70-degree angle on a tilt table for approximately a total of 35 min. 400 µg of glyceryl trinitrate (GTN) was administered sublingually after the first 20 min and monitoring continued for another 15 min. Mean imputation and K-nearest neighbors (KNN) imputation approaches to handle missing values. Next, feature selection techniques were implemented, including genetic algorithm, recursive feature elimination, and feature importance, to determine the crucial features. The Mann-Whitney U test was then performed to determine the statistical difference between two groups. Patients with VVS are categorized via machine learning models including Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), KNN, Logistic Regression (LR), and Random Forest (RF). The developed model is interpreted using an explainable artificial intelligence (XAI) model known as partial dependence plot.

    RESULTS: A total of 137 subjects aged between 9 and 93 years were recruited for this study, 54 experienced clinical symptoms were considered positive tests, while the remaining 83 tested negative. Optimal results were obtained by combining the KNN imputation technique and three tilting features with SVM with 90.5% accuracy, 87.0% sensitivity, 92.7% specificity, 88.6% precision, 87.8% F1 score, and 95.4% ROC (receiver operating characteristics) AUC (area under curve).

    CONCLUSIONS: The proposed algorithm effectively classifies VVS patients with over 90% accuracy. However, the study was confined to a small sample size. More clinical datasets are required to ensure that our approach is generalizable.

    Matched MeSH terms: Artificial Intelligence
  11. Cheah MH, Gan YN, Altice FL, Wickersham JA, Shrestha R, Salleh NAM, et al.
    JMIR Hum Factors, 2024 Jan 26;11:e52055.
    PMID: 38277206 DOI: 10.2196/52055
    BACKGROUND: The HIV epidemic continues to grow fastest among men who have sex with men (MSM) in Malaysia in the presence of stigma and discrimination. Engaging MSM on the internet using chatbots supported through artificial intelligence (AI) can potentially help HIV prevention efforts. We previously identified the benefits, limitations, and preferred features of HIV prevention AI chatbots and developed an AI chatbot prototype that is now tested for feasibility and acceptability.

    OBJECTIVE: This study aims to test the feasibility and acceptability of an AI chatbot in promoting the uptake of HIV testing and pre-exposure prophylaxis (PrEP) in MSM.

    METHODS: We conducted beta testing with 14 MSM from February to April 2022 using Zoom (Zoom Video Communications, Inc). Beta testing involved 3 steps: a 45-minute human-chatbot interaction using the think-aloud method, a 35-minute semistructured interview, and a 10-minute web-based survey. The first 2 steps were recorded, transcribed verbatim, and analyzed using the Unified Theory of Acceptance and Use of Technology. Emerging themes from the qualitative data were mapped on the 4 domains of the Unified Theory of Acceptance and Use of Technology: performance expectancy, effort expectancy, facilitating conditions, and social influence.

    RESULTS: Most participants (13/14, 93%) perceived the chatbot to be useful because it provided comprehensive information on HIV testing and PrEP (performance expectancy). All participants indicated that the chatbot was easy to use because of its simple, straightforward design and quick, friendly responses (effort expectancy). Moreover, 93% (13/14) of the participants rated the overall chatbot quality as high, and all participants perceived the chatbot as a helpful tool and would refer it to others. Approximately 79% (11/14) of the participants agreed they would continue using the chatbot. They suggested adding a local language (ie, Bahasa Malaysia) to customize the chatbot to the Malaysian context (facilitating condition) and suggested that the chatbot should also incorporate more information on mental health, HIV risk assessment, and consequences of HIV. In terms of social influence, all participants perceived the chatbot as helpful in avoiding stigma-inducing interactions and thus could increase the frequency of HIV testing and PrEP uptake among MSM.

    CONCLUSIONS: The current AI chatbot is feasible and acceptable to promote the uptake of HIV testing and PrEP. To ensure the successful implementation and dissemination of AI chatbots in Malaysia, they should be customized to communicate in Bahasa Malaysia and upgraded to provide other HIV-related information to improve usability, such as mental health support, risk assessment for sexually transmitted infections, AIDS treatment, and the consequences of contracting HIV.

    Matched MeSH terms: Artificial Intelligence
  12. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A
    Comput Biol Med, 2020 Jun;121:103795.
    PMID: 32568676 DOI: 10.1016/j.compbiomed.2020.103795
    Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
    Matched MeSH terms: Artificial Intelligence
  13. Kamel NS, Sayeed S, Ellis GA
    IEEE Trans Pattern Anal Mach Intell, 2008 Jun;30(6):1109-13.
    PMID: 18421114 DOI: 10.1109/TPAMI.2008.32
    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
    Matched MeSH terms: Artificial Intelligence*
  14. Gan HS, Tan TS, Wong LX, Tham WK, Sayuti KA, Abdul Karim AH, et al.
    Biomed Mater Eng, 2014;24(6):3145-57.
    PMID: 25227024 DOI: 10.3233/BME-141137
    In medical image segmentation, manual segmentation is considered both labor- and time-intensive while automated segmentation often fails to segment anatomically intricate structure accordingly. Interactive segmentation can tackle shortcomings reported by previous segmentation approaches through user intervention. To better reflect user intention, development of suitable editing functions is critical. In this paper, we propose an interactive knee cartilage extraction software that covers three important features: intuitiveness, speed, and convenience. The segmentation is performed using multi-label random walks algorithm. Our segmentation software is simple to use, intuitive to normal and osteoarthritic image segmentation and efficient using only two third of manual segmentation's time. Future works will extend this software to three dimensional segmentation and quantitative analysis.
    Matched MeSH terms: Artificial Intelligence
  15. Logeswaran R
    Comput Methods Programs Biomed, 2012 Sep;107(3):404-12.
    PMID: 21194781 DOI: 10.1016/j.cmpb.2010.12.002
    This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases.
    Matched MeSH terms: Artificial Intelligence
  16. Ihtatho D, Fadzil MH, Affandi AM, Hussein SH
    PMID: 18002738
    Psoriasis is a skin disorder which is caused by genetic fault. There is no cure for psoriasis, however, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, PASI (Psoriasis Area and Severity Index) which is the current gold standard method is used to measure psoriasis severity by evaluating the area, erythema, scaliness and thickness of the plaques. However, the calculation of PASI can be tedious and subjective. In this work, we develop a computer vision method that determines one of the PASI parameter, the lesion area. The method isolates healthy (or healed) skin areas from lesion areas by analyzing the hue and chroma information in the CIE L*a*b* colour space. Centroids of healthy skin and psoriasis in the hue-chroma space are determined from selected sample. Euclidean distance of all pixels from each centroid is calculated. Each pixel is assigned to the class with minimum Euclidean distance. The study involves patients from three different ethnic origins having different skin tones. Results obtained show that the proposed method is comparable to the dermatologist visual approach.
    Matched MeSH terms: Artificial Intelligence
  17. Zain JM, Fauzi AM, Aziz AA
    Conf Proc IEEE Eng Med Biol Soc, 2007 10 20;2006:5459-62.
    PMID: 17946306
    Digital watermarking medical images provides security to the images. The purpose of this study was to see whether digitally watermarked images changed clinical diagnoses when assessed by radiologists. We embedded 256 bits watermark to various medical images in the region of non-interest (RONI) and 480K bits in both region of interest (ROI) and RONI. Our results showed that watermarking medical images did not alter clinical diagnoses. In addition, there was no difference in image quality when visually assessed by the medical radiologists. We therefore concluded that digital watermarking medical images were safe in terms of preserving image quality for clinical purposes.
    Matched MeSH terms: Artificial Intelligence
  18. Jamal N, Ng KH, Looi LM, McLean D, Zulfiqar A, Tan SP, et al.
    Phys Med Biol, 2006 Nov 21;51(22):5843-57.
    PMID: 17068368
    We describe a semi-automated technique for the quantitative assessment of breast density from digitized mammograms in comparison with patterns suggested by Tabar. It was developed using the MATLAB-based graphical user interface applications. It is based on an interactive thresholding method, after a short automated method that shows the fibroglandular tissue area, breast area and breast density each time new thresholds are placed on the image. The breast density is taken as a percentage of the fibroglandular tissue to the breast tissue areas. It was tested in four different ways, namely by examining: (i) correlation of the quantitative assessment results with subjective classification, (ii) classification performance using the quantitative assessment technique, (iii) interobserver agreement and (iv) intraobserver agreement. The results of the quantitative assessment correlated well (r2 = 0.92) with the subjective Tabar patterns classified by the radiologist (correctly classified 83% of digitized mammograms). The average kappa coefficient for the agreement between the readers was 0.63. This indicated moderate agreement between the three observers in classifying breast density using the quantitative assessment technique. The kappa coefficient of 0.75 for intraobserver agreement reflected good agreement between two sets of readings. The technique may be useful as a supplement to the radiologist's assessment in classifying mammograms into Tabar's pattern associated with breast cancer risk.
    Matched MeSH terms: Artificial Intelligence
  19. Gatellier L, Ong SK, Matsuda T, Ramlee N, Lau FN, Yusak S, et al.
    Asian Pac J Cancer Prev, 2021 Sep 01;22(9):2945-2950.
    PMID: 34582666 DOI: 10.31557/APJCP.2021.22.9.2945
    The COVID-pandemic has shown significant impact on cancer care from early detection, management plan to clinical outcomes of cancer patients. The Asian National Cancer Centres Alliance (ANCCA) has put together the 9 "Ps" as guidelines for cancer programs to better prepare for the next pandemic. The 9 "Ps" are Priority, Protocols and Processes, Patients, People, Personal Protective Equipments (PPEs), Pharmaceuticals, Places, Preparedness, and Politics. Priority: to maintain cancer care as a key priority in the health system response even during a global infectious disease pandemic. Protocol and processes: to develop a set of Standard Operating Procedures (SOPs) and have relevant expertise to man the Disease Outbreak Response (DORS) Taskforce before an outbreak. Patients: to prioritize patient safety in the event of an outbreak and the need to reschedule cancer management plan, supported by tele-consultation and use of artificial intelligence technology. People: to have business continuity planning to support surge capacity. PPEs and Pharmaceuticals: to develop plan for stockpiles management, build local manufacturing capacity and disseminate information on proper use and reduce wastage. Places: to design and build cancer care facilities to cater for the need of triaging, infection control, isolation and segregation. Preparedness: to invest early on manpower building and technology innovations through multisectoral and international collaborations. Politics: to ensure leadership which bring trust, cohesion and solidarity for successful response to pandemic and mitigate negative impact on the healthcare system.
    Matched MeSH terms: Artificial Intelligence
  20. Baharuddin MY, Salleh ShH, Hamedi M, Zulkifly AH, Lee MH, Mohd Noor A, et al.
    Biomed Res Int, 2014;2014:478248.
    PMID: 24800230 DOI: 10.1155/2014/478248
    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links