Displaying publications 281 - 300 of 310 in total

Abstract:
Sort:
  1. Sheikh BY, Sarker MMR, Kamarudin MNA, Mohan G
    Biomed Pharmacother, 2017 Dec;96:834-846.
    PMID: 29078261 DOI: 10.1016/j.biopha.2017.10.038
    Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  2. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH
    BMC Complement Altern Med, 2018 Mar 12;18(1):87.
    PMID: 29530022 DOI: 10.1186/s12906-018-2153-5
    BACKGROUND: Ardisia crispa Thunb. D.C is used mostly in some parts of the Asian region by traditional practitioners to treat certain diseases associated with oxidative stress and inflammation including cancer and rheumatism. In Malaysia, it is popularly known as 'Mata Ayam' and local traditional practitioners believed that the root of the plant is therapeutically beneficial.

    METHODS: The cytotoxic effect of hydromethanolic extract of A. crispa and its solvents partitions (ethyl acetate and aqueous extracts) against breast cancer cells were evaluated by using MTT assay. The cells were treated with concentration of extracts ranging from 15.63 μg/mL- 1000 μg/mL for 72 h. The quantification of phenolic and flavonoid contents of the extracts were carried out to determine the relationship between of phytochemical compounds responsible for cytotoxic and antioxidative activities. The antioxidant capacity was measured by DPPH and ABTS free radical scavenging assay and expressed as milligram (mg) Trolox equivalent antioxidant capacity per 1 g (g) of tested extract.

    RESULTS: The hydromethanolic and ethyl acetate extracts showed moderate cytotoxic effect against MCF-7 with IC50 values of 57.35 ± 19.33 μg/mL, and 54.98 ± 14.10 μg/mL, respectively but aqueous extract was inactive against MCF-7. For MDA-MB-231, hydromethanolic, ethyl acetate and aqueous extracts exhibited weak cytotoxic effects against MDA-MB-231 with IC50 values more than 100 μg/mL. The plant revealed high total phenolic content, total flavonoid and antioxidant capacity.

    CONCLUSION: The response of different type of breast cancer cell lines towards A. crispa extract and its partitions varied. Accordingly, hydromethanolic and ethyl acetate extracts appear to be more cytotoxic to oestrogen receptor (ER) positive breast cancer than oestrogen receptor (ER) negative breast cancer. However, aqueous extract appears to have poor activity to both types of breast cancer. Besides that, hydromethanolic and ethyl acetate extracts exhibit higher TPC, TFC and antioxidant capacity compared to aqueous extract. Synergistic effect of anticancer and antioxidant bioactives compounds of A. crispa plausibly contributed to the cytotoxic effects of the extract.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  3. Orlikova B, Schumacher M, Juncker T, Yan CC, Inayat-Hussain SH, Hajjouli S, et al.
    Food Chem Toxicol, 2013 Sep;59:572-8.
    PMID: 23845509 DOI: 10.1016/j.fct.2013.06.051
    (R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects; Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*
  4. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/metabolism; Antineoplastic Agents, Phytogenic/pharmacology*
  5. Jabbarzadeh Kaboli P, Leong MP, Ismail P, Ling KH
    Pharmacol Rep, 2019 Feb;71(1):13-23.
    PMID: 30343043 DOI: 10.1016/j.pharep.2018.07.005
    BACKGROUND: Berberine is an alkaloid plant-based DNA intercalator that affects gene regulation, particularly expression of oncogenic and tumor suppressor proteins. The effects of berberine on different signaling proteins remains to be elucidated. The present study aimed to identify the effects of berberine against key oncogenic proteins in breast cancer cells.

    METHODS: Molecular docking and molecular dynamics simulations were used for EGFR, p38, ERK1/2, and AKT. The effects of berberine and lapatinib on MAPK and PI3K pathways in MDA-MB231 and MCF-7 cells were evaluated using immunoflorescence assays, and the amounts of phosphorylated kinases were compared to total kinases after treating with different concentrations of berberine.

    RESULTS: Simulations showed berberine accurately interacted with EGFR, AKT, P38, and ERK1/2 active sites in silico (scores = -7.57 to -7.92 Kcal/mol) and decreased the levels of active forms of corresponding enzymes in both cell lines; however, berberine binding to p38 showed less stability. Cytotoxicity analysis indicated that MDA-MB231 cells were resistant to berberine compared to MCF-7 cells [72 h IC50 = 50 versus 15 μM, respectively). Also, lapatinib strongly activated AKT but suppressed EGFR in MDA-MB231 cells. The activity of EGFR, AKT, P38, and ERK1/2 were affected by berberine; however, berberine dramatically reduced EGFR and AKT phosphorylation.

    CONCLUSION: By way of its multikinase inhibitory effects, berberine might be a useful replacement for lapatinib, an EGFR inhibitor which can cause acquired drug resistance in patients.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/metabolism; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  6. Chong KW, Yeap JS, Lim SH, Weber JF, Low YY, Kam TS
    J Nat Prod, 2017 11 22;80(11):3014-3024.
    PMID: 29087707 DOI: 10.1021/acs.jnatprod.7b00621
    Reexamination of the absolute configuration of recently isolated eburnane alkaloids from Malaysian Kopsia and Leuconotis species by X-ray diffraction analysis and ECD/TDDFT has revealed the existence of biosynthetic enantiodivergence. Three different scenarios are discerned with respect to the composition of the enantiomeric eburnane alkaloids in these plants: first, where the new eburnane congeners possess the same C-20, C-21 absolute configurations as the common eburnane alkaloids (eburnamonine, eburnamine, isoeburnamine, eburnamenine) occurring in the same plant; second, where the new eburnane congeners possess opposite or enantiomeric C-20, C-21 absolute configurations compared to the common eburnane alkaloids found in the same plant; and, third, where the four common eburnane alkaloids were isolated as racemic or scalemic mixtures, while the new eburnane congeners were isolated as pure enantiomers with a common C-20, C-21 configuration (20α, 21α). Additionally, the same Kopsia species (K. pauciflora) found in two different geographical locations (Peninsular Malaysia and Malaysian Borneo) showed different patterns in the composition of the enantiomeric eburnane alkaloids. Revision of the absolute configurations of a number of new eburnane congeners (previously assigned based on the assumption of a common biogenetic origin to that of the known eburnane alkaloids co-occurring in the same plant) is required based on the present results.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic
  7. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry*
  8. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/therapeutic use; Antineoplastic Agents, Phytogenic/toxicity
  9. Hasima N, Ozpolat B
    Cell Death Dis, 2014;5:e1509.
    PMID: 25375374 DOI: 10.1038/cddis.2014.467
    Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  10. Lee SH, Jaganath IB, Manikam R, Sekaran SD
    BMC Complement Altern Med, 2013 Oct 20;13:271.
    PMID: 24138815 DOI: 10.1186/1472-6882-13-271
    BACKGROUND: Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities.

    METHODS: Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus.

    RESULTS: Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity.

    CONCLUSIONS: Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  11. Ooi KL, Tengku Muhammad TS, Lim CH, Sulaiman SF
    Integr Cancer Ther, 2010 Mar;9(1):73-83.
    PMID: 20150224 DOI: 10.1177/1534735409356443
    The chloroform extract of Physalis minima produced a significant growth inhibition against human T-47D breast carcinoma cells as compared with other extracts with an EC(50) value of 3.8 microg/mL. An analysis of cell death mechanisms indicated that the extract elicited an apoptotic cell death. mRNA expression analysis revealed the coregulation of apoptotic genes, that is, c-myc , p53, and caspase-3. The c-myc was significantly induced by the chloroform extract at the earlier phase of treatment, followed by p53 and caspase-3. Biochemical assay and ultrastructural observation displayed typical apoptotic features in the treated cells, including DNA fragmentation, blebbing and convolution of cell membrane, clumping and margination of chromatin, and production of membrane-bound apoptotic bodies. The presence of different stages of apoptotic cell death and phosphatidylserine externalization were further reconfirmed by annexin V and propidium iodide staining. Thus, the results from this study strongly suggest that the chloroform extract of P. minima induced apoptotic cell death via p53-, caspase-3-, and c-myc-dependent pathways.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  12. Inayat-Hussain SH, Chan KM, Rajab NF, Din LB, Chow SC, Kizilors A, et al.
    Toxicol Lett, 2010 Mar 1;193(1):108-14.
    PMID: 20026395 DOI: 10.1016/j.toxlet.2009.12.010
    Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/toxicity*
  13. Sim SK, Tan YC, Tee JH, Yusoff AA, Abdullah JM
    Turk Neurosurg, 2015;25(4):617-24.
    PMID: 26242340 DOI: 10.5137/1019-5149.JTN.14035-15.1
    This study evaluated the neuroprotective effect of intrathecally infused paclitaxel in the prevention of motoneuron death and mitochondrial dysfunction following brachial plexus avulsion injury.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  14. Nassar ZD, Aisha AF, Idris N, Khadeer Ahamed MB, Ismail Z, Abu-Salah KM, et al.
    Oncol Rep, 2012 Mar;27(3):727-33.
    PMID: 22134768 DOI: 10.3892/or.2011.1569
    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  15. Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, et al.
    J Food Sci, 2021 Feb;86(2):366-375.
    PMID: 33448034 DOI: 10.1111/1750-3841.15599
    Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  16. Mohd Fisall UF, Ismail NZ, Adebayo IA, Arsad H
    Mol Biol Rep, 2021 May;48(5):4465-4475.
    PMID: 34086162 DOI: 10.1007/s11033-021-06466-y
    Moringa oleifera is a well-known medicinal plant which has anti-cancer and other biological activities. This research aims to determine the cytotoxic and apoptotic effect of M. oleifera leave extract on the breast cancer (MCF7) cells. The extracts were prepared using hexane, dichloromethane, chloroform and n-butanol by fractionating the crude 80% methanol extract of the plant leaves. The cytotoxic effect of the extracts on MCF7 cells were determined using CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay. The apoptosis study was conducted using Annexin V-FITC analysis and confirmed by Western blotting using selected proteins, which are p53, Bax, cytochrome c and caspase 8. Our results showed that the dichloromethane (DF-CME-MOL) extract was selectively cytotoxic to MCF7 cells (5 μg/mL) without significantly inhibiting the non-cancerous breast (MCF 10A) cells. It had the highest selectivity index (SI) value of 9.5 among the tested extracts. It also induced early apoptosis and increased the expressions of pro-apoptotic proteins Bax, caspase 8 and p53 in MCF7 cells. Gas chromatography-mass spectrometry analysis (GC-MS) analysis showed that the major compounds found in DF-CME-MOL were benzeneacetonitrile, 4-hydroxy- and benzeneacetic acid, 4-hydroxy-, methyl ester among others that were detected. Thus, DF-CME-MOL extract was found to inhibit the proliferation of MCF7 cells by apoptosis induction, which is likely due to the activities of the detected phytochemical compounds of the extract.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  17. Zainal NS, Gan CP, Lau BF, Yee PS, Tiong KH, Abdul Rahman ZA, et al.
    Phytomedicine, 2018 Jan 15;39:33-41.
    PMID: 29433681 DOI: 10.1016/j.phymed.2017.12.011
    BACKGROUND: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown.

    PURPOSE: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action.

    METHODS: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting.

    RESULTS: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins.

    CONCLUSION: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
  18. Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, et al.
    PLoS One, 2017;12(8):e0182357.
    PMID: 28771532 DOI: 10.1371/journal.pone.0182357
    Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/toxicity*
  19. Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303970 DOI: 10.3390/molecules23010110
    Pistachio (Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  20. Nagoor NH, Shah Jehan Muttiah N, Lim CS, In LL, Mohamad K, Awang K
    PLoS One, 2011;6(8):e23661.
    PMID: 21858194 DOI: 10.1371/journal.pone.0023661
    The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC(50) value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links