Displaying publications 321 - 340 of 3479 in total

Abstract:
Sort:
  1. Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, et al.
    Biomed Pharmacother, 2024 May;174:116432.
    PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432
    Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
    Matched MeSH terms: DNA Damage/drug effects
  2. Pirojsirikul T, Lee VS, Nimmanpipug P
    Mol Biotechnol, 2024 Apr;66(4):582-591.
    PMID: 38374320 DOI: 10.1007/s12033-024-01082-0
    We utilized molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) free energy calculations to investigate the specificity of two oligonucleotide probes, namely probe B and probe D, in detecting single-stranded DNA (ssDNA) within three bacteria families: Enterobacteriaceae, Pasteurellaceae, and Vibrionaceae. Due to the limited understanding of molecular mechanisms in the previous research, we have extended the discussion to focus specifically on investigating the binding process of bacteria-probe DNA duplexes, with an emphasis on analyzing the binding free energy. The role of electrostatic contributions in the specificity between the oligonucleotide probes and the bacterial ssDNAs was investigated and found to be crucial. Our calculations yielded results that were highly consistent with the experimental data. Through our study, we have successfully exhibited the benefits of utilizing in-silico approaches as a powerful virtual-screening tool, particularly in research areas that demand a thorough comprehension of molecular interactions.
    Matched MeSH terms: DNA, Bacterial/genetics
  3. Najam M, Rasool RU, Ahmad HF, Ashraf U, Malik AW
    Biomed Res Int, 2019;2019:7074387.
    PMID: 31111064 DOI: 10.1155/2019/7074387
    Storing and processing of large DNA sequences has always been a major problem due to increasing volume of DNA sequence data. However, a number of solutions have been proposed but they require significant computation and memory. Therefore, an efficient storage and pattern matching solution is required for DNA sequencing data. Bloom filters (BFs) represent an efficient data structure, which is mostly used in the domain of bioinformatics for classification of DNA sequences. In this paper, we explore more dimensions where BFs can be used other than classification. A proposed solution is based on Multiple Bloom Filters (MBFs) that finds all the locations and number of repetitions of the specified pattern inside a DNA sequence. Both of these factors are extremely important in determining the type and intensity of any disease. This paper serves as a first effort towards optimizing the search for location and frequency of substrings in DNA sequences using MBFs. We expect that further optimizations in the proposed solution can bring remarkable results as this paper presents a proof of concept implementation for a given set of data using proposed MBFs technique. Performance evaluation shows improved accuracy and time efficiency of the proposed approach.
    Matched MeSH terms: Sequence Analysis, DNA/methods*
  4. Ibrahim AH, Rahman NNA, Saifuddeen SM
    J Bioeth Inq, 2023 Sep;20(3):485-495.
    PMID: 37440155 DOI: 10.1007/s11673-023-10279-y
    Mitochondrial replacement technology (MRT) is an emerging and complex bioethical issue. This treatment aims to eliminate maternal inherited mitochondrial DNA (mtDNA) disorders. For Muslims, its introduction affects every aspect of human life, especially the five essential interests of human beings-namely, religion, life, lineage, intellect, and property. Thus, this technology must be assessed using a comprehensive and holistic approach addressing these human essential interests. Consequently, this article analyses and assesses tri-parent baby technology from the perspective of Maqasidic bioethics-that is, Islamic bioethics based on the framework of Maqasid al-Shariah. Using this analysis, this article suggests that tri-parent baby technology should not be permitted for Muslims due to the existence of third-party cell gametes which lead to lineage mixing and due to the uncertain safety of the therapy itself and because the major aim of the technology is to fulfil the affected couples interest to conceive their own genetically healthy child, not to treat and cure mtDNA disorders sufferers.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  5. Ooi JSY, Lim CR, Hua CX, Ng JF, New SY
    Langmuir, 2023 Oct 31;39(43):15200-15207.
    PMID: 37851548 DOI: 10.1021/acs.langmuir.3c01748
    This study investigates the effect of DNA hairpins on the stabilization of gold nanoparticles (AuNPs) against salt-induced aggregation (SIA) in label-free colorimetric biosensors. AuNPs were incubated with DNA hairpins of varying stem lengths and toehold sequences, followed by the addition of NaCl, before being subjected to ultraviolet-visible (UV-vis) measurement. Results showed that hairpins with longer stems generally provide better stabilization of AuNPs (18-bp >14-bp >10-bp). No improvement was observed for 14- and 18-bp hairpins with a toehold beyond 8A, which may be attributed to saturated adsorption of hairpins on the gold surface. For 14-bp hairpins with an 8-mer homopolymeric toehold, we observed a stabilization trend of A > C > G > T, similar to the reported trend of ssDNA. For variants containing ≥50% adenine as terminal bases, introducing cytosine or guanine as preceding bases could also result in strong stabilization. As the proportion of adenine decreases, variants with guanine or thymine provide less protection against SIA, especially for guanine-rich hairpins (≥6G) that could form G-quadruplexes. Such findings could serve as guidelines for researchers to design suitable DNA hairpins for label-free AuNP-based biosensors.
    Matched MeSH terms: DNA/genetics
  6. Ahammed KS, Pachal S, Majumdar P, Dutta S
    Chembiochem, 2023 Apr 17;24(8):e202200715.
    PMID: 36747378 DOI: 10.1002/cbic.202200715
    The dynamic topological states of chromosomal DNA regulate many cellular fundamental processes universally in all three domains of life, that is, bacteria, archaea, and eukaryotes. DNA-binding proteins maintain the regional and global supercoiling of the chromosome and thereby regulate the chromatin architecture that ultimately influences the gene expression network and other DNA-centric molecular events in various microenvironments and growth phases. DNA-binding small molecules are pivotal weapons for treating a wide range of cancers. Recent advances in single-molecule biophysical tools have uncovered the fact that many DNA-binding ligands not only alter the regional DNA supercoiling but also modulate the overall morphology of DNA. Here we provide insight into recent advances in atomic force microscopy (AFM) acquired DNA structural change induced by therapeutically important mono- and bis-intercalating anticancer agents as well as DNA-adduct-forming anticancer drugs. We also emphasize the growing evidence of the mechanistic relevance of changes in DNA topology in the anticancer cellular responses of DNA-targeting chemotherapeutic agents.
    Matched MeSH terms: DNA/chemistry
  7. Feng M, Tan K, Zhang H, Duan X, Li S, Ma H, et al.
    Fish Shellfish Immunol, 2023 Oct;141:109059.
    PMID: 37678479 DOI: 10.1016/j.fsi.2023.109059
    High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.
    Matched MeSH terms: DNA, Complementary/genetics
  8. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, Rashid MRA
    J Forensic Sci, 2023 Nov;68(6):2103-2115.
    PMID: 37646344 DOI: 10.1111/1556-4029.15370
    The onus of proof in criminal cases is beyond any reasonable doubt, and the issue on the lack of complete internal validation data can be manipulated when it comes to justifying the validity and reliability of the X-chromosomal short tandem repeats analysis for court representation. Therefore, this research evaluated the efficiency of the optimized 60% reduced volumes for polymerase chain reaction (PCR) amplification using the Qiagen Investigator® Argus X-12 QS Kit, as well as the capillary electrophoresis (CE) sample preparation for blood samples on Flinder's Technology Associates (FTA) cards. Good-quality DNA profile (3000-12,000 RFU) from the purified blood sample on FTA card (1.2 mm) were obtained using the optimized PCR (10.0 μL of PCR reaction volume and 21 cycles) and CE (9.0 μL Hi-Di™ Formamide and 0.3 μL DNA Size Standard 550 [BTO] and 27 s injection time) conditions. The analytical and stochastic thresholds were 100 and 200 RFU, respectively. Hence, the internal validation data supported the use of the optimized 60% reduced PCR amplification reaction volume of the Qiagen Investigator® Argus X-12 QS Kit as well as the CE sample preparation for producing reliable DNA profiles that comply with the quality assurance standards for forensic DNA testing laboratories, while optimizing the analytical cost.
    Matched MeSH terms: DNA/genetics
  9. Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, M Liao L, Papenbrock J
    PLoS One, 2021;16(10):e0258956.
    PMID: 34679102 DOI: 10.1371/journal.pone.0258956
    The genus Halophila shows the highest species diversity within the seagrass genera. Southeast Asian countries where several boundary lines exist were considered as the origin of seagrasses. We hypothesize that the boundary lines, such as Wallace's and Lydekker's Lines, may act as marine geographic barriers to the population structure of Halophila major. Seagrass samples were collected at three islands in Vietnamese waters and analyzed by the molecular maker ITS. These sequences were compared with published ITS sequences from seagrasses collected in the whole region of interest. In this study, we reveal the haplotype and nucleotide diversity, linking population genetics, phylogeography, phylogenetics and estimation of relative divergence times of H. major and other members of the Halophila genus. The morphological characters show variation. The results of the ITS marker analysis reveal smaller groups of H. major from Myanmar, Shoalwater Bay (Australia) and Okinawa (Japan) with high supporting values. The remaining groups including Sri Lanka, Viet Nam, the Philippines, Thailand, Malaysia, Indonesia, Two Peoples Bay (Australia) and Tokushima (Japan) showed low supporting values. The Wallacea region shows the highest haplotype and also nucleotide diversity. Non-significant differences were found among regions, but significant differences were presented among populations. The relative divergence times between some members of section Halophila were estimated 2.15-6.64 Mya.
    Matched MeSH terms: DNA, Ribosomal*
  10. Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A
    Panminerva Med, 2023 Jun;65(2):166-178.
    PMID: 37335245 DOI: 10.23736/S0031-0808.23.04871-1
    Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
    Matched MeSH terms: DNA Methylation/genetics
  11. Sultana S, Azlan A, Mohd Desa MN, Mahyudin NA, Anburaj A
    PMID: 38284970 DOI: 10.1080/19440049.2024.2304577
    Regular testing and systematic investigation play a vital role to ensure product safety. Until now, the existing food authentication techniques have been based on proteins, lipids, and nucleic acid-based assays. Among various deoxyribonucleic acid (DNA)-based methods, the recently developed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based bio-sensing is an innovative and fast-expanding technology. The CRISPR/Cas-9 is known as Clustered Regularly Interspaced Short Palindromic Repeats due to the flexibility and simplicity of the CRISPR/Cas9 site-specific editing tool has been applied in many biological research areas such as Gene therapy, cell line development, discovering mechanisms of disease, and drug discovery. Nowadays, the CRISPR-Cas system has also been introduced into food authentication via detecting DNA barcodes of poultry and livestock both in processed and unprocessed food samples. This review documents various DNA based approaches, in an accessible format. Future CRISPR technologies are forecast while challenges are outlined.
    Matched MeSH terms: DNA/genetics
  12. Zhang H, Lin J, Yahaya BH
    J Cancer Res Clin Oncol, 2024 Jan 28;150(2):44.
    PMID: 38281298 DOI: 10.1007/s00432-023-05554-9
    BACKGROUND: Transactivating DNA-binding protein 43 (TDP-43) is intimately associated with tumorigenesis and progression by regulating mRNA splicing, transport, stability, and non-coding RNA molecules. The exact role of TDP-43 in lung adenocarcinoma (LUAD) has not yet been fully elucidated, despite extensive research on its function in various cancer types. An imperative aspect of comprehending the underlying biological characteristics associated with TDP-43 involves investigating the genes that are co-expressed with this protein. This study assesses the prognostic significance of these co-expressed genes in LUAD and subsequently explores potential therapeutic strategies based on these findings.

    METHODS: Transcriptomic and clinical data pertaining to LUAD were retrieved from open-access databases to establish an association between mRNA expression profiles and the presence of TDP-43. A risk-prognosis model was developed to compare patient survival rates across various groups, and its accuracy was also assessed. Additionally, differences in tumor stemness, mutational profiles, tumor microenvironment (TME) characteristics, immune checkpoints, and immune cell infiltration were analyzed in the different groups. Moreover, the study entailed predicting the potential response to immunotherapy as well as the sensitivity to commonly employed chemotherapeutic agents and targeted drugs for each distinct group.

    RESULTS: The TDP-43 Co-expressed Gene Risk Score (TCGRS) model was constructed utilizing four genes: Kinesin Family Member 20A (KIF20A), WD Repeat Domain 4 (WDR4), Proline Rich 11 (PRR11), and Glia Maturation Factor Gamma (GMFG). The value of this model in predicting LUAD patient survival is effectively illustrated by both the Kaplan-Meier (K-M) survival curve and the area under the receiver operating characteristic curve (AUC-ROC). The Gene Set Enrichment Analysis (GSEA) revealed that the high TCGRS group was primarily enriched in biological pathways and functions linked to DNA replication and cell cycle; the low TCGRS group showed primary enrichment in immune-related pathways and functions. The high and low TCGRS groups showed differences in tumor stemness, mutational burden, TME, immune infiltration level, and immune checkpoints. The predictions analysis of immunotherapy indicates that the Tumor Immune Dysfunction and Exclusion (TIDE) score (p 

    Matched MeSH terms: DNA-Binding Proteins/genetics
  13. Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Majid WHA, Rahman SA
    Sensors (Basel), 2012;12(3):3578-3586.
    PMID: 22737025 DOI: 10.3390/s120303578
    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.
    Matched MeSH terms: DNA/chemistry*
  14. Kumari N, Subramaniam G, Navaratnam P, Sekaran SD
    Indian J Med Microbiol, 2008 5 1;26(2):148-50.
    PMID: 18445951
    Genes encoding the quinolones resistance determining regions (QRDRs) in Streptococcus pneumoniae were detected by PCR and the sequence analysis was carried out to identify point mutations within these regions. The study was carried out to observe mutation patterns among S. pneumoniae strains in Malaysia. Antimicrobial susceptibility testing of 100 isolates was determined against various antibiotics, out of which 56 strains were categorised to have reduced susceptibility to ciprofloxacin (>or=2 microg/mL). These strains were subjected to PCR amplification for presence of the gyrA, parC , gyrB and parE genes. Eight representative strains with various susceptibilities to fluoroquinolones were sequenced. Two out of the eight isolates that were sequenced were shown to have a point mutation in the gyrA gene at position Ser81. The detection of mutation at codon Ser81 of the gyrA gene suggested the potential of developing fluoroquinolone resistance among S. pneumoniae isolates in Malaysia. However, further experimental work is required to confirm the involvement of this mutation in the development of fluoroquinolone resistance in Malaysia.
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Bacterial/chemistry; Sequence Analysis, DNA; DNA Gyrase/genetics; DNA Topoisomerase IV/genetics
  15. Gunasinghe J, Hwang SS, Yam WK, Rahman T, Wezen XC
    J Biomol Struct Dyn, 2023;41(12):5583-5596.
    PMID: 35751129 DOI: 10.1080/07391102.2022.2091659
    High-risk (HR) Human papillomavirus (e.g. HPV16 and HPV18) causes approximately two-thirds of all cervical cancers in women. Although the first and second-generation vaccines confer some protection against individuals, there are no approved drugs to treat HR-HPV infections to-date. The HPV E1 protein is an attractive drug target because the protein is highly conserved across all HPV types and is crucial for the regulation of viral DNA replication. Hence, we used the Random Forest algorithm to construct a Quantitative-Structure Activity Relationship (QSAR) model to predict the potential inhibitors against the HPV E1 protein. Our QSAR classification model achieved an accuracy of 87.5%, area under the receiver operating characteristic curve of 1.00, and F-measure of 0.87 when evaluated using an external test set. We conducted a drug repurposing campaign by deploying the model to screen the Drugbank database. The top three compounds, namely Cinalukast, Lobeglitazone, and Efatutazone were analyzed for their cell membrane permeability, toxicity, and carcinogenicity. Finally, these three compounds were subjected to molecular docking and 200 ns-long Molecular Dynamics (MD) simulations. The predicted binding free energies for the candidates were calculated using the MM-GBSA method. The binding free energies for Cinalukast, Lobeglitazone, and Efatutazone were -37.84 kcal/mol, -25.30 kcal/mol, and -29.89 kcal/mol respectively. Therefore, we propose their chemical scaffolds for future rational design of E1 inhibitors.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: DNA Replication; DNA, Viral
  16. Evgeni E, Sabbaghian M, Saleh R, Gül M, Vogiatzi P, Durairajanayagam D, et al.
    Panminerva Med, 2023 Jun;65(2):135-147.
    PMID: 37103485 DOI: 10.23736/S0031-0808.23.04836-X
    Male infertility is attributed to multiple factors including high levels of sperm DNA fragmentation (SDF). Conventional semen analysis continues to be the gold standard for diagnosis of male factor infertility around the world. However, the limitations of basic semen analysis have prompted the search for complementary assessments of sperm function and integrity. Sperm DNA fragmentation assays (direct or indirect) are emerging as important diagnostic tools in male infertility workups, and have been advocated for use in infertile couples for a variety of reasons. While a controlled degree of DNA nicking is required for appropriate DNA compaction, excessive fragmentation of sperm DNA is linked to impaired male fertility potential, decreased fertilization, poor embryo quality, recurrent pregnancy loss, and failure of assisted reproductive technology procedures. However, there is an ongoing debate regarding whether or not to employ SDF as a routine test for male infertility. This review compiles up-to-date information regarding the pathophysiology of SDF, the currently available SDF tests, and the role of SDF tests in natural and assisted conception conditions.
    Matched MeSH terms: DNA; DNA Fragmentation
  17. Doorenweerd C, San Jose M, Leblanc L, Barr N, Geib SM, Chung AYC, et al.
    Mol Ecol Resour, 2024 Aug;24(6):e13987.
    PMID: 38956928 DOI: 10.1111/1755-0998.13987
    The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.
    Matched MeSH terms: Sequence Analysis, DNA/methods
  18. Kuwata K, Lum WM, Takahashi K, Benico G, Takahashi K, Lim PT, et al.
    Harmful Algae, 2024 Sep;138:102701.
    PMID: 39244236 DOI: 10.1016/j.hal.2024.102701
    Amphidoma languida, a marine thecate dinoflagellate that produces the lipophilic toxin azaspiracids (AZAs), is primarily found in the Atlantic. Although this species has not been recorded in the Asian Pacific, environmental DNAs related to Am. languida have been widely detected in the region by metabarcoding analysis. Their morphology and AZA production remain unclear. In this study, the morphology, ultrastructure, phylogeny, and AZA production of nine Amphidoma strains isolated from Japan, Malaysia, and Philippines were investigated. Phylogenetic trees inferred from rDNAs (SSU, ITS, and LSU rDNA) showed monophyly of the nine Pacific strains and were sister to the Am. languida clade, including the toxigenic strains from the Atlantic. Cells were ellipsoid, 8.7-16.7 µm in length and 7.4-14.0 µm in width, with a conspicuous apical pore complex. A large nucleus in the hyposome, parietal chloroplast with a spherical pyrenoid in the episome, and refractile bodies were observed. Thecal tabulation was typical of Amphidoma, Po, cp, X, 6', 6'', 6C, 5S, 6''', 2''''. A ventral pore was located on the anterior of 1' plate, beside the suture to 6' plate. The presence of a ventral depression, on the anterior of anterior sulcal plate, was different from Am. languida. A large antapical pore, containing approximately 10 small pores, was observed. Cells were apparently smaller than Am. trioculata, a species possessing three pores (ventral pore, ventral depression, and antapical pore). TEM showed the presence of crystalline structures, resembling guanine crystals, and cytoplasmic invaginations into the pyrenoid matrix. Flagellar apparatus lacking the striated root connective is similar to peridinioids and related dinoflagellates. AZAs were not detected from the Pacific strains by LC-MS/MS. This non-toxigenic Amphidoma species, here we propose as Amphidoma fulgens sp. nov., is widely distributed in the Asian Pacific. Moreover, molecular comparison also suggested that most of the environmental DNA sequences previously reported as Am. languida or related sequences from the Asian Pacific were attributable to Am. fulgens.
    Matched MeSH terms: DNA, Ribosomal/genetics
  19. Voon K, Ng QM, Yu M, Wang LF, Chua KB
    PMID: 23077814
    Viruses in the family Picornaviridae are classified into nine genera. Within the family Picornaviridae, two species: Encephalomyocarditis virus and Theilovirus, are listed under the genus Cardiovirus. A novel Theilovirus, Saffold virus (SAFV), was first reported in 2007. Since then, numerous SAFV isolates have been detected around the world and genetic recombinations have been reported among them. In 2009, SAFV-Penang was isolated from a febrile child with influenza-like illness in Malaysia. SAFV-Penang is a genotype 3 SAFV. In this study we investigated the genome features of SAFV-Penang to exclude the possibility it is a recombinant variant. SAFV-Penang was found not to be a recombinant variant but to have three unique non-synonymous substitutions, alanine [A689], lysine [K708] and isoleucine [I724] in the VP1 protein.
    Matched MeSH terms: DNA, Viral; Sequence Analysis, DNA
  20. Yousaf MZ, Abbas M, Nazir T, Abdullah FA, Birhanu A, Emadifar H
    Sci Rep, 2024 Mar 17;14(1):6410.
    PMID: 38494490 DOI: 10.1038/s41598-024-55786-z
    The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system's potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.
    Matched MeSH terms: DNA/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links