Displaying publications 321 - 337 of 337 in total

Abstract:
Sort:
  1. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al-Lohedan HA
    Materials (Basel), 2019 Apr 11;12(7).
    PMID: 30978916 DOI: 10.3390/ma12071178
    The present study deals with the synthesis, characterization, and DNA extraction of poly(4,4'-cyclohexylidene bisphenol oxalate)/silica (Si) nanocomposites (NCs). The effects of varying the monomer/Si (3.7%, 7%, and 13%) ratio towards the size and morphology of the resulting NC and its DNA extraction capabilities have also been studied. For the NC synthesis, two different methods were followed, including the direct mixing of poly(4,4'-cyclohexylidene bisphenol oxalate) with fumed Si, and in situ polymerization of the 4,4'-cyclohexylidene bisphenol monomer in the presence of fumed silica (11 nm). The formed NCs were thoroughly investigated by using different techniques such as scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis where the results supported that there was the successful formation of poly(4,4'-cyclohexylidene bisphenol oxalate)/Si NC. Within the three different NC samples, the one with 13% Si was found to maintain a very high surface area of 12.237 m²/g, as compared to the other two samples consisting of 7% Si (3.362 m²/g) and 3.7% Si (1.788 m²/g). Further, the solid phase DNA extraction studies indicated that the efficiency is strongly influenced by the amount of polymer (0.2 g > 0.1 g > 0.02 g) and the type of binding buffer. Among the three binding buffers tested, the guanidine hydrochloride/EtOH buffer produced the most satisfactory results in terms of yield (1,348,000 ng) and extraction efficiency (3370 ng/mL) as compared to the other two buffers of NaCl (2 M) and phosphate buffered silane. Based on our results, it can be indicated that the developed poly(4,4'-cyclohexylidene bisphenol oxalate)/Si NC can serve as one of the suitable candidates for the extraction of DNA in high amounts as compared to other traditional solid phase approaches.
    Matched MeSH terms: Silicon Dioxide
  2. Ismail S, Yusof NA, Abdullah J, Abd Rahman SF
    Materials (Basel), 2020 Jul 16;13(14).
    PMID: 32708531 DOI: 10.3390/ma13143168
    Arsenic poisoning in the environment can cause severe effects on human health, hence detection is crucial. An electrochemical-based portable assessment of arsenic contamination is the ability to identify arsenite (As(III)). To achieve this, a low-cost electroanalytical assay for the detection of As(III) utilizing a silica nanoparticles (SiNPs)-modified screen-printed carbon electrode (SPCE) was developed. The morphological and elemental analysis of functionalized SiNPs and a SiNPs/SPCE-modified sensor was studied using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The electrochemical responses towards arsenic detection were measured using the cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) techniques. Under optimized conditions, the anodic peak current was proportional to the As(III) concentration over a wide linear range of 5 to 30 µg/L, with a detection limit of 6.2 µg/L. The suggested approach was effectively valid for the testing of As(III) found within the real water samples with good reproducibility and stability.
    Matched MeSH terms: Silicon Dioxide
  3. Misson M, Du X, Jin B, Zhang H
    Enzyme Microb Technol, 2016 Mar;84:68-77.
    PMID: 26827776 DOI: 10.1016/j.enzmictec.2015.12.008
    Functional nanomaterials have been pursued to assemble nanobiocatalysts since they can provide unique hierarchical nanostructures and localized nanoenvironments for enhancing enzyme specificity, stability and selectivity. Functionalized dendrimer-like hierarchically porous silica nanoparticles (HPSNs) was fabricated for assembling β-galactosidase nanobiocatalysts for bioconversion of lactose to galacto-oligosaccharides (GOS). The nanocarrier was functionalized with amino (NH2) and carboxyl (COOH) groups to facilitate enzyme binding, benchmarking with non-functionalized HPSNs. Successful conjugation of the functional groups was confirmed by FTIR, TGA and zeta potential analysis. HPSNs-NH2 showed 1.8-fold and 1.1-fold higher β-galactosidase adsorption than HPSNs-COOH and HPSNs carriers, respectively, with the highest enzyme adsorption capacity of 328mg/g nanocarrier at an initial enzyme concentration of 8mg/ml. The HPSNs-NH2 and β-galactosidase assembly (HPSNs-NH2-Gal) demonstrated to maintain the highest activity at all tested enzyme concentrations and exhibited activity up to 10 continuous cycles. Importantly, HPSNs-NH2-Gal was simply recycled through centrifugation, overcoming the challenging problems of separating the nanocarrier from the reaction medium. HPSNs-NH2-Gal had distinguished catalytic reaction profiles by favoring transgalactosylation, enhancing GOS production of up to 122g/l in comparison with 56g/l by free β-galactosidase. Furthermore, it generated up to 46g/l GOS at a lower initial lactose concentration while the free counterpart had negligible GOS production as hydrolysis was overwhelmingly dominant in the reaction system. Our research findings show the amino-functionalized HPSNs can selectively promote the enzyme activity of β-galactosidase for transgalactosylation, which is beneficial for GOS production.
    Matched MeSH terms: Silicon Dioxide
  4. Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, et al.
    Int J Pharm, 2021 Jan 05;592:120043.
    PMID: 33152476 DOI: 10.1016/j.ijpharm.2020.120043
    Cancer is a community health hazard which progress at a fatal rate in various countries across the globe. An agent used for chemotherapy should exhibit ideal properties to be an effective anticancer medicine. The chemotherapeutic medicines used for treatment of various cancers are, gemcitabine, paclitaxel, etoposide, methotrexate, cisplatin, doxorubicin and 5-fluorouracil. However, many of these agents present nonspecific systemic toxicity that prevents their treatment efficiency. Of all, gemcitabine has shown to be an active agent against colon, pancreatic, colon, ovarian, breast, head and neck and lung cancers in amalgamation with various anticancer agents. Gemcitabine is considered a gold-standard and the first FDA approved agent used as a monotherapy in management of advanced pancreatic cancers. However due to its poor pharmacokinetics, there is need of newer drug delivery system for efficient action. Nanotechnology has shown to be an emerging trend in field of medicine in providing novel modalities for cancer treatment. Various nanocarriers have the potential to deliver the drug at the desired site to obtain information about diagnosis and treatment of cancer. This review highlights on various nanocarriers like polymeric nanoparticles, solid lipid nanoparticles, mesoporous silica nanoparticles, magnetic nanoparticles, micelles, liposomes, dendrimers, gold nanoparticles and combination approaches for delivery of gemcitabine for cancer therapy. The co-encapsulation and concurrent delivery of Gem with other anticancer agents can enhance drug action at the cancer site with reduced side effects.
    Matched MeSH terms: Silicon Dioxide
  5. Mohd Nazri Idris, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Sodium silicate was used to synthesize silica fine particles at room temperature using non-ionic surfactant of triethanolamine (TEA), dissolution salt and precipitating agent. The experiments were conducted by different composition of precursor material, nonionic surfactant and dissolution salt concentrations through the sol-gel process. Various particle sizes in the range 100-300nm were synthesized. The particle size of silica powders were analyzed via Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Analysis (EDAX), X-Ray Fluorescence (XRF), and Fourier Transformation Infrared (FTIR). The result has demonstrated that the particle size can be controlled by changing the ratio of non-ionic surfactant and dissolution salt or the sodium silicate concentration.
    Matched MeSH terms: Silicon Dioxide
  6. Shahril Anuar Bahari, Kamrie Kamlon, Masitah Abu Kassim
    MyJurnal
    In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
    Matched MeSH terms: Silicon Dioxide
  7. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
    Matched MeSH terms: Silicon Dioxide
  8. Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS
    Small, 2018 Nov;14(44):e1802086.
    PMID: 30191658 DOI: 10.1002/smll.201802086
    The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
    Matched MeSH terms: Silicon Dioxide
  9. Ng NT, Kamaruddin AF, Wan Ibrahim WA, Sanagi MM, Abdul Keyon AS
    J Sep Sci, 2018 Jan;41(1):195-208.
    PMID: 28834218 DOI: 10.1002/jssc.201700689
    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels.
    Matched MeSH terms: Silicon Dioxide
  10. Shamsudin R, Abdul Azam F', Abdul Hamid MA, Ismail H
    Materials (Basel), 2017 Oct 17;10(10).
    PMID: 29039743 DOI: 10.3390/ma10101188
    The aim of this study was to prepare β-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare β-wollastonite, the precursor ratio of CaO:SiO₂ was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO₂ in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only β-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, β-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the β-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and β-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and β-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the β-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.
    Matched MeSH terms: Silicon Dioxide
  11. Mohamed M, Yusup S, Quitain AT, Kida T
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33882-33896.
    PMID: 29956260 DOI: 10.1007/s11356-018-2549-2
    The CO2 capture capacity and cyclic stability of calcium oxide (CaO) prepared from cockle shells (CS) were enhanced by incorporating rice husk (RH) and binder through wet-mixing method. The cyclic reaction of calcination and carbonation was demonstrated using thermal gravimetric analyzer (TGA) which the calcination was performed in a pure N2 environment at 850 °C for 20 min and carbonation at 650 °C for 30 min in 20 vol% of CO2 in N2. The analysis using x-ray fluorescence (XRF) identified silica (Si) as the major elements in the sorbents. The RH-added sorbents also contained several types of metal elements such as which was a key factor to minimize the sintering of the sorbent during the cyclic reaction and contributed to higher CO2 capture capacity. The presence of various morphologies also associated with the improvement of the synthesized sorbents performance. The highest initial CO2 capture capacity was exhibited by CS+10%RH sorbent, which was 12% higher than the RH-free sorbent (CS). However, sorbents with the higher RH loading amount such as 40 and 50 wt% were preferred to maintain high capture capacity when the sorbents were regenerated and extended to the cyclic reaction. The sorbents also demonstrated the lowest average sorption decay, which suggested the most stable sorbent for cyclic-reaction. Once regenerated, the capture capacity of the RH-added sorbent was further increased by 12% when clay was added into the sorbent. Overall, the metal elements in RH and clay were possibly the key factor that enhances the performance of CaO prepared from CS, particularly for cyclic CO2 capture. Graphical abstract Cyclic calcination and carbonation reaction.
    Matched MeSH terms: Silicon Dioxide
  12. Gabris MA, Jume BH, Rezaali M, Shahabuddin S, Nodeh HR, Saidur R
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27122-27132.
    PMID: 30022389 DOI: 10.1007/s11356-018-2749-9
    This work presents the synthesis of the novel silica-cyanopropyl functionalized magnetic graphene oxide (MGO/SiO2-CN) hybrid nanomaterial derived by sol-gel method as a cheap efficient magnetic sorbent for the removal of extremely hazardous lead ions from aqueous media. The integration of the magnetic property, the carbon substrate, and the nitrile (-C ≡ N) containing organic grafted silica matrix promoted the adsorption capability against lead ions along with its simple synthesis recovery and low cost. The prepared nanocomposite was comprehensively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Adsorption of lead was found to be pH dependent because of the charged nature of both analyte and adsorbent surface. Adsorption experiments were conducted under the optimum conditions, and the obtained experimental data from atomic absorption spectroscopy were analyzed using the popular isothermal models namely Langmuir, Freundlich, and Dubinin-Radushkevich isotherms as well as kinetically studied and evaluated for adsorption standard free energy (E). The experimental results have demonstrated the enhanced adsorption capability of the proposed sorbent nanocomposite for lead ion removal with the maximum adsorption capacity of 111.11 mg/g at pH 5.0. The proposed mechanism of lead adsorption was mainly attributed to the complexation of lead positive ions with the grafted -C ≡ N bond. The synergistic effect of the combination of three components (i.e., the magnetic graphene oxide matrix, the triple bond containing organic moiety, and the inorganic porous silica framework) excelled the adsorption capability and proved to be a good candidate as adsorbent for the removal of lead ions.
    Matched MeSH terms: Silicon Dioxide
  13. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Silicon Dioxide
  14. Yadav VK, Yadav KK, Alam J, Cabral-Pinto MM, Gnanamoorthy G, Alhoshan M, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71766-71778.
    PMID: 34523099 DOI: 10.1007/s11356-021-15009-8
    Incense sticks ash is one of the most unexplored by-products generated at religious places and houses obtained after the combustion of incense sticks. Every year, tonnes of incense sticks ash is produced at religious places in India which are disposed of into the rivers and water bodies. The presence of heavy metals and high content of alkali metals challenges a potential threat to the living organism after the disposal in the river. The leaching of heavy metals and alkali metals may lead to water pollution. Besides this, incense sticks also have a high amount of calcium, silica, alumina, and ferrous along with traces of rutile and other oxides either in crystalline or amorphous phases. The incense sticks ash, heavy metals, and alkali metals can be extracted by water, mineral acids, and alkali. Ferrous can be extracted by magnetic separation, while calcium by HCl, alumina by sulfuric acid treatment, and silica by strong hydroxides like NaOH. The recovery of such elements by using acids and bases will eliminate their toxic heavy metals at the same time recovering major value-added minerals from it. Here, in the present research work, the effect on the elemental composition, morphology, crystallinity, and size of incense sticks ash particles was observed by extracting ferrous, followed by extraction of calcium by HCl and alumina by H2SO4 at 90-95 °C for 90 min. The final residue was treated with 4 M NaOH, in order to extract leachable silica at 90 °C for 90 min along with continuous stirring. The transformation of various minerals phases and microstructures of incense sticks ash (ISA) and other residues during ferrous, extraction, calcium, and alumina and silica extraction was studied using Fourier transform infrared (FTIR), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). DLS was used for analyzing the size during the experiments while FTIR helped in the confirmation of the formation of new products during the treatments. From the various instrumental analyses, it was found that the toxic metals present in the initial incense sticks ash got eliminated. Besides this, the major alkali metals, i.e., Ca and Mg, got reduced during these successive treatments. Initially, there were mainly irregular shaped, micron-sized particles that were dominant in the incense sticks ash particles. Besides this, there were plenty of carbon particles left unburned during combustion. In the final residue, nanosized flowers shaped along with cuboidal micron-sized particles were dominant. present in If, such sequential techniques will be applied by the industries based on recycling of incense sticks ash, then not only the solid waste pollution will be reduced but also numerous value-added minerals like ferrous, silica, alumina calcium oxides and carbonates can be recovered from such waste. The value-added minerals could act as an economical and sustainable source of adsorbent for wastewater treatment in future.
    Matched MeSH terms: Silicon Dioxide
  15. Alawjali SS, Lui JL
    J Dent, 2013 Aug;41 Suppl 3:e53-61.
    PMID: 23103847 DOI: 10.1016/j.jdent.2012.10.008
    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system.
    Matched MeSH terms: Silicon Dioxide/chemistry
  16. Razak AA, Harrison A
    J Prosthet Dent, 1997 Apr;77(4):353-8.
    PMID: 9104710
    Dimensional accuracy of a composite inlay restoration is important to ensure an accurate fit and to minimize cementation stresses.
    Matched MeSH terms: Silicon Dioxide/chemistry
  17. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Water Res, 2012 Dec 1;46(19):6419-29.
    PMID: 23062787 DOI: 10.1016/j.watres.2012.09.014
    In this study, the operational factors affecting the bioregeneration of AO7-loaded MAMS particles in batch system, namely redox condition, initial acclimated biomass concentration, shaking speed and type of acclimated biomass were investigated. The results revealed that with the use of mixed culture acclimated to AO7 under anoxic/aerobic conditions, enhancement of the bioregeneration efficiency of AO7-loaded MAMS and the total removal efficiency of COD could be achieved when the bio-decolorization and bio-mineralization stages were fully aerated with dissolved oxygen above 7 mg/L. Shorter duration of bioregeneration was achieved by using relatively higher initial biomass concentration and lower shaking speed, respectively, whereas variations of biomass concentration and shaking speed did not have a pronounced effect on the bioregeneration efficiency. The duration and efficiency of bioregeneration process were greatly affected by the chemical structures of mono-azo dyes to which the biomasses were acclimated.
    Matched MeSH terms: Silicon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links