METHODS: We used semi-quantitative reverse-transcriptase PCR (RT-PCR) and Western blot to investigate the expression of full length p53 (TAp53), Delta40p53, Delta133p53 or p53beta in diagnostic marrow from a clinical cohort of 50 BCP-ALL patients without TP53 mutation (29 males and 21 females, age range 2-14 years) and in the bone marrow cells of 4 healthy donors (used as controls).
RESULTS: Irrespective of isoforms, levels of p53 mRNA were low in controls but were increased by 2 to 20-fold in primary or relapse BCP-ALL. TAp53 was increased in primary BCP-ALL, Delta40p53 was elevated in relapse BCP-ALL, whereas Delta133p53 and p53beta were increased in both. Next, mRNA levels were used as a basis to infer the ratio between protein isoform levels. This inference suggested that, in primary BCP-ALL, p53 was predominantly in active oligomeric conformations dominated by TAp53. In contrast, p53 mostly existed in inactive quaternary conformations containing ≥2 Delta40 or Delta133p53 in relapse BCP-ALL. Western blot analysis of blasts from BCP-ALL showed a complex pattern of N-terminally truncated p53 isoforms, whereas TAp53beta was detected as a major isoform. The hypothesis that p53 is in an active form in primary B-ALL was consistent with elevated level of p53 target genes CDKN1A and MDM2 in primary cases, whereas in relapse BCP-ALL, only CDKN1A was increased as compared to controls.
CONCLUSION: Expression of p53 isoforms is deregulated in BCP-ALL in the absence of TP53 mutation, with increased expression of alternative isoforms in relapse BCP-ALL. Variations in isoform expression may contribute to functional deregulation of the p53 pathway in BCP-ALL, specifically contributing to its down-regulation in relapse forms.
METHODS: Detailed phenotyping and next-generation sequencing (panel and exome).
RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.
CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.
CASE REPORT: This paper describes a case of SOT affecting the anterior mandible of a 10-year-old Indian female. The patient was treated by local surgical excision and there has been no follow-up clinical record of recurrence 5 years after primary treatment. Histo?pathological examination revealed a solid, locally-infiltrative neoplasm composed of bland-looking squamatoid islands scattered in a mature fibrous connective tissue stroma and the diagnosis was SOT. Immunohistochemical evaluation showed positive reactivity of varying intensity in the neoplastic epithelial cells for Notch1, Notch3, Notch4, and their ligands Jagged1 and Delta1. Expression patterns showed considerable overlap. No immunoreactivity was detected for Notch2 and Jagged2.
CONCLUSIONS: Present findings suggest that Notch receptors and their ligands play differential roles in the cytodifferentiation of SOT.
METHODS: In this study, a dystrophin-deficient myoblast cell line established from the skeletal muscle of a dystrophic (mdx) mouse was used as a model. The dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen conditions for 10 days to induce differentiation. The cells were subjected to total protein extraction prior to Western blotting assay technique. Protein sub-fractionation has been conducted to determine protein localization. The live-cell analysis of autophagy assay was done using a flow cytometer.
RESULTS: In our culture system, the dfd13 myoblasts did not achieve terminal differentiation. PTEN expression was profoundly increased in dfd13 myoblasts throughout the differentiation day subsequently indicates perturbation of PI3K/Akt/mTOR regulation. In addition, rictor-mTORC2 was also found inactivated in this event. This occurrence has caused FoxO3 misregulation leads to higher activation of autophagy-related genes in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, the ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features.
CONCLUSION: Perturbation of the PTEN-PI3K/Akt pathway triggers excessive autophagosome formation and subsequently reduced autophagic flux within dystrophin-deficient myoblasts where these findings are of importance to understand Duchenne Muscular Dystrophy (DMD) patients. We believe that some manipulation within its regulatory signaling reported in this study could help restore muscle homeostasis and attenuate disease progression. Video Abstract.
Materials and methods: 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis.
Results: Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability.
Conclusion: Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2-STAT3 signaling in CRC.