Displaying publications 341 - 360 of 712 in total

Abstract:
Sort:
  1. Ganasen P, Khan MR, Kalam MA, Mahmud MS
    Bioprocess Biosyst Eng, 2014 Nov;37(11):2353-9.
    PMID: 24879090 DOI: 10.1007/s00449-014-1213-6
    This paper demonstrates Pseudomonas cepacia lipase catalyzed hydrolysis of p-nitrophenyl palmitate under irradiation of light with wavelengths of 250-750 nm. The reaction follows Michaelis-Menten Kinetics and the light irradiation increases the overall rate of hydrolysis. Using Lineweaver-Burk plot K M and V max values for the reaction in presence of light are found to be 39.07 and 66.67 mM/min/g, respectively; while for the same reaction under dark condition, the values are 7.08 and 10.21 mM/min/g. The linear form of enzyme dependent rate of reaction confirms that no mass-transfer limitations are present and the reaction is a kinetically controlled enzymatic reaction.
    Matched MeSH terms: Enzymes, Immobilized/radiation effects; Lipase/radiation effects
  2. Lachumy SJ, Oon CE, Deivanai S, Saravanan D, Vijayarathna S, Choong YS, et al.
    Asian Pac J Cancer Prev, 2013;14(10):5553-65.
    PMID: 24289545
    Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green anti- irradiation approach for the betterment of human beings without high cost, side effects and toxicity.
    Matched MeSH terms: Radiation-Protective Agents/pharmacology*; Radiation-Protective Agents/therapeutic use*
  3. Gokula K, Earnest A, Wong LC
    Radiat Oncol, 2013;8:268.
    PMID: 24229418 DOI: 10.1186/1748-717X-8-268
    This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk.
    Matched MeSH terms: Radiation Pneumonitis/etiology; Radiation Pneumonitis/epidemiology*
  4. Heidari MH, Porghasem M, Mirzaei N, Mohseni JH, Heidari M, Azargashb E, et al.
    J Environ Radioact, 2014 Feb;128:64-7.
    PMID: 24292395 DOI: 10.1016/j.jenvrad.2013.11.001
    Since several high level natural radiation areas (HLNRAs) exist on our planet, considerable attention has been drawn to health issues that may develop as the result of visiting or living in such places. City of Ramsar in Iran is an HNLRA, and is a tourist attraction mainly due to its hot spas. However, the growing awareness over its natural radiation sources has prompted widespread scientific investigation at national level. In this study, using an ELISA method, the level of expression of three tumor markers known as carcinoembryonic antigen (CEA), prostate-specific antigen (PSA) and carcino antigen 19-9 (CA19-9) in blood serum of 40 local men of Ramsar (subject group) was investigated and compared to 40 men from the city of Noshahr (control group). Noshahr was previously identified as a normal level natural radiation area (NLNRA) that is some 85 km far from Ramsar. According to statistical analysis, there was a significant difference in the levels of PSA and CA19-9 markers between the two groups (p 
    Matched MeSH terms: Background Radiation*; Radiation Monitoring
  5. Hamidi H, Mohammadian E, Junin R, Rafati R, Manan M, Azdarpour A, et al.
    Ultrasonics, 2014 Feb;54(2):655-62.
    PMID: 24075416 DOI: 10.1016/j.ultras.2013.09.006
    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation, heat generation, and viscosity reduction are three of the promising mechanisms causing increase in oil recovery under ultrasound.
    Matched MeSH terms: Oils/radiation effects*; Radiation Dosage
  6. Lee JS, Ee ML, Chung KH, Othman Z
    Carbohydr Polym, 2013 Sep 12;97(2):614-7.
    PMID: 23911492 DOI: 10.1016/j.carbpol.2013.05.047
    The effect of gamma-irradiation on formation of resistant starch (RS) in corn starch with different amylose content was examined. Normal corn starch, waxy corn starch, and high amylose corn starch (Hylon V and Hylon VII) were irradiated at 5, 10, 25 and 50 kGy. Gamma-irradiation at 5 kGy increased the amylose-like molecules in starches and thus significantly enhanced the RS content (p<0.05). Highest RS content was produced by 50 kGy irradiated in all the starch samples (p<0.05). The irradiation-induced RS was more evident in waxy corn starch, followed by high amylose corn starch and normal corn starch.
    Matched MeSH terms: Dose-Response Relationship, Radiation; Starch/radiation effects*
  7. Alnour IA, Wagiran H, Ibrahim N, Hamzah S, Elias MS, Laili Z, et al.
    Radiat Prot Dosimetry, 2014 Jan;158(2):201-7.
    PMID: 23965286 DOI: 10.1093/rpd/nct206
    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.
    Matched MeSH terms: Background Radiation; Radiation Monitoring/methods
  8. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS
    J Environ Radioact, 2013 Oct;124:130-40.
    PMID: 23727880 DOI: 10.1016/j.jenvrad.2013.04.013
    Extensive environmental survey and measurements of gamma radioactivity in the soil samples collected from Segamat District were conducted. Two gamma detectors were used for the measurements of background radiation in the area and the results were used in the computation of the mean external radiation dose rate and mean weighted dose rate, which are 276 nGy h(-1) and 1.169 mSv y(-1), respectively. A high purity germanium (HPGe) detector was used in the assessment of activity concentrations of (232)Th, (226)Ra and (40)K. The results of the gamma spectrometry range from 11 ± 1 to 1210 ± 41 Bq kg(-1) for (232)Th, 12 ± 1 to 968 ± 27 Bq kg(-1) for (226)Ra, and 12 ± 2 to 2450 ± 86 Bq kg(-1) for (40)K. Gross alpha and gross beta activity concentrations range from 170 ± 50 to 4360 ± 170 Bq kg(-1) and 70 ± 20 to 4690 ± 90 Bq kg(-1), respectively. These results were used in the plotting of digital maps (using ARCGIS 9.3) for isodose. The results are compared with values giving in UNSCEAR 2000.
    Matched MeSH terms: Background Radiation; Radiation Dosage; Radiation Monitoring
  9. Abdollahi Y, Abdullah AH, Gaya UI, Zainal Z, Yusof NA
    Environ Technol, 2012 Jun;33(10-12):1183-9.
    PMID: 22856288
    The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.
    Matched MeSH terms: Cresols/radiation effects; Water Pollutants, Chemical/radiation effects
  10. Ismail B, Teng IL, Muhammad Samudi Y
    Radiat Prot Dosimetry, 2011 Nov;147(4):600-7.
    PMID: 21266370 DOI: 10.1093/rpd/ncq577
    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory control and should be considered radiologically safe for future land use.
    Matched MeSH terms: Background Radiation; Neoplasms, Radiation-Induced/etiology
  11. Narayanan SN, Kumar RS, Potu BK, Nayak S, Bhat PG, Mailankot M
    Ups. J. Med. Sci., 2010 May;115(2):91-6.
    PMID: 20095879 DOI: 10.3109/03009730903552661
    The interaction of mobile phone radio-frequency electromagnetic radiation (RF-EMR) with the brain is a serious concern of our society.
    Matched MeSH terms: Avoidance Learning/radiation effects*; Hippocampus/radiation effects*
  12. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ
    J Hazard Mater, 2009 Aug 30;168(1):57-63.
    PMID: 19268454 DOI: 10.1016/j.jhazmat.2009.01.130
    The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
    Matched MeSH terms: Chlorophenols/radiation effects*; Water Pollutants/radiation effects*
  13. Lee SK, Wagiran H, Ramli AT, Apriantoro NH, Wood AK
    J Environ Radioact, 2009 May;100(5):368-74.
    PMID: 19299052 DOI: 10.1016/j.jenvrad.2009.01.001
    Natural background gamma radiation and radioactivity concentrations were investigated from 2003 to 2005 in Kinta District, Perak, Malaysia. Sample locations were distant from any 'amang' processing plants. The external gamma dose rates ranged from 39 to 1039 nGy h(-1). The mean external gamma dose rate was 222+/-191 nG yh(-1). Small areas of relatively enhanced activity were located having external gamma dose rates of up to 1039+/-104 nGy h(-1). The activity concentrations of (238)U, (232)Th and (40)K were analyzed by using a high-resolution co-axial HPGe detector system. The activity concentration ranges were 12-426 Bq kg(-1) for (238)U, 19-1377 Bq kg(-1) for (232)Th and <19-2204 Bq kg(-1) for (40)K. Based on the radioactivity levels determined, the gamma-absorbed dose rates in air at 1m above the ground were calculated. The calculated dose rates and measured dose rates had a good correlation coefficient, R of 0.94. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the gamma-absorbed dose rate and the mean population weighted dose rate were calculated. An isodose map for the Kinta District was also produced.
    Matched MeSH terms: Radiation Monitoring/methods; Radiation Monitoring/statistics & numerical data*
  14. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
    Matched MeSH terms: Radiation Dosage; Silicon Dioxide/radiation effects*
  15. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
    Matched MeSH terms: Coloring Agents/radiation effects*; Water Pollutants, Chemical/radiation effects*
  16. Muzaffar TST, Imran Y, Iskandar MA, Zakaria A
    Med J Malaysia, 2005 Jul;60 Suppl C:26-9.
    PMID: 16381279
    Femoral interlocking nailing requires fluoroscopic assistance for insertion of the nail and distal screws. In this study, scattered radiation to the eye and hand of the operating surgeon was measured during the procedure. Thermo-luminescent dosimeter (TLD) was used to quantify the dose received by the surgeon. The mean radiation exposure time during the procedure was 3.89 minutes. The mean scattered radiation doses to the hand and eye were 0.27 mSv and 0.09 mSv per procedure respectively. These very low doses have made a surgeon very unlikely to receive more than the recommended annual dose limit set by the National Council on Radiological Protection.
    Matched MeSH terms: Radiation Dosage*; Scattering, Radiation
  17. Ramli K, Abdullah BJ, Ng KH, Mahmud R, Hussain AF
    Australas Radiol, 2005 Dec;49(6):460-6.
    PMID: 16351609
    The aim of this study was to compare the image quality and entrance skin dose (ESD) for film-screen and computed chest radiography. Analysis of the image quality and dose on chest radiography was carried out on a conventional X-ray unit using film-screen, storage phosphor plates and selenium drum direct chest radiography. For each receptor, ESD was measured in 60 patients using thermoluminescent dosemeters. Images were printed on 35 x 43 cm films. Image quality was assessed subjectively by evaluation of anatomic features and estimation of the image quality, following the guidelines established by the protocols of the Commission of the European Communities. There was no statistically significant difference noted between the computed and conventional images (Wilcoxon rank sum test, P > 0.05). Imaging of the mediastinum and peripheral lung structures were better visualized with the storage phosphor and selenium drum technique than with the film-screen combination. The patients' mean ESD for chest radiography using the storage phosphor, film-screen combination and selenium drum was 0.20, 0.20 and 0.25 mGy, respectively, with no statistically significant difference with P > 0.05 (chi(2) tests).
    Matched MeSH terms: Radiation Dosage; Skin/radiation effects
  18. Ng KH, Jamal N, DeWerd L
    Radiat Prot Dosimetry, 2006;121(4):445-51.
    PMID: 16709704
    The systematic monitoring of image quality and radiation dose is an ultimate solution to ensuring the continuously high quality of mammography examination. At present several protocols exist around the world, and different test objects are used for quality control (QC) of the physical and technical aspects of screen-film mammography. This situation may lead to differences in radiation image quality and dose reported. This article reviews the global QC perspective for the physical and technical aspects of screen-film mammography with regard to image quality and radiation dose. It points out issues that must be resolved in terms of radiation dose and that also affect the comparison.
    Matched MeSH terms: Radiation Dosage; Radiation Protection/standards*
  19. Abubakar Z, Salema AA, Ani FN
    Bioresour Technol, 2013 Jan;128:578-85.
    PMID: 23211483 DOI: 10.1016/j.biortech.2012.10.084
    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
    Matched MeSH terms: Fruit/radiation effects*; Araceae/radiation effects*
  20. Ab Hamid SS, Zahari NK, Yusof N, Hassan A
    Cell Tissue Bank, 2014 Mar;15(1):15-24.
    PMID: 23187886 DOI: 10.1007/s10561-012-9353-x
    Human amniotic membrane that has been processed and sterilised by gamma irradiation is widely used as a biological dressing in surgical applications. The morphological structure of human amniotic membrane was studied under scanning electron microscopy (SEM) to assess effects of gamma radiation on human amniotic membrane following different preservation methods. The amniotic membrane was preserved by either air drying or submerged in glycerol before gamma irradiated at 15, 25 and 35 kGy. Fresh human amniotic membrane, neither preserved nor irradiated was used as the control. The surface morphology of glycerol preserved amnion was found comparable to the fresh amniotic membrane. The cells of the glycerol preserved was beautifully arranged, homogonous in size and tended to round up. The cell structure in the air dried preserved amnion seemed to be flattened and dehydrated. The effects of dehydration on intercellular channels and the microvilli on the cell surface were clearly seen at higher magnifications (10,000×). SEM revealed that the changes of the cell morphology of the glycerol preserved amnion were visible at 35 kGy while the air dried already changed at 25 kGy. Glycerol preservation method is recommended for human amniotic membrane as the cell morphological structure is maintained and radiation doses lower than 25 kGy for sterilization did not affect the appearance of the preserved amnion.
    Matched MeSH terms: Amnion/radiation effects*; Surface Properties/radiation effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links