Displaying publications 3781 - 3800 of 4701 in total

Abstract:
Sort:
  1. Perrineau MM, Le Roux C, Galiana A, Faye A, Duponnois R, Goh D, et al.
    Appl Environ Microbiol, 2014 Sep;80(18):5709-16.
    PMID: 25002434 DOI: 10.1128/AEM.02007-14
    Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices.
    Matched MeSH terms: Bradyrhizobium/isolation & purification
  2. Abu Bakar A, Ngiu CS, Mohamad Said MS, Periyasamy P
    Ann Acad Med Singap, 2011 Oct;40(10):467-8.
    PMID: 22206056
    Matched MeSH terms: Salmonella/isolation & purification*
  3. Huang D, Gao F, Huang Y, Zheng R, Fang C, Huang W, et al.
    PMID: 39710086 DOI: 10.1016/j.cbpc.2024.110091
    Cathelicidin is a family of antimicrobial peptides in vertebrates that plays an important role in resistance and immunization against pathogenic microorganisms. In the present study, the full-length cDNA sequences of four novel cathelicidins (cathelicidin-1 to cathelicidin-4) in the tiger frog Hoplobatrachus rugulosus, encoding 153, 188, 132, and 160 amino acids, respectively, were firstly cloned by rapid amplification of the cDNA ends (RACE) technique. Sequence comparison and phylogenetic tree analysis indicated that the structures of the four cathelicidins are highly diverse. Afterwards, the tissue distribution profiles and antimicrobial patterns of cathelicidins in H. rugulosus were determined by real-time PCR. The four cathelicidins showed tissue-specific distribution patterns in the healthy frogs, and the transcriptional levels of cathelicidins exhibited a tissue- and time-dependency profile in the frogs challenged with pathogenic bacteria Aeromonas hydrophila for 72 h. The synthetic peptides of cathelicidin-1 and cathelicidin-2 exhibited broad-spectrum in vitro antimicrobial activity, and cathelicidins exerted antimicrobial activities through excessive induction of reactive oxygen species and direct disruption of the microbial membrane structure. In addition, the intraperitoneal injection of cathelicidin proteins significantly increased the marine medaka Oryzias melastigma resistance to bacterial challenges. The existence of multiple cathelicidins, their distinct tissue distribution patterns, and the inducible expression profiles suggest a sophisticated, highly redundant, and multilevel network of antimicrobial defense mechanisms in tiger frogs. This study provides evidence that cathelicidins have antimicrobial and immunomodulatory activities, and cathelicidins derived from H. rugulosus have potential therapeutic applications against pathogenic infections in aquaculture.
    Matched MeSH terms: Antimicrobial Cationic Peptides/isolation & purification
  4. Midot F, Goh KM, Liew KJ, Lau SYL, Espenberg M, Mander Ü, et al.
    Appl Environ Microbiol, 2025 Jan 31;91(1):e0198624.
    PMID: 39714193 DOI: 10.1128/aem.01986-24
    Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood. This study examines the dynamics of peat chemistry, soil microbial communities, and GHG emissions from 2016 to 2020 in a logged-over secondary peat swamp forest in Sarawak, Malaysia, which transitioned to an oil palm plantation. This study focuses on changes in genetic composition governing plant litter degradation, methane (CH4), and nitrous oxide (N2O) fluxes. Soil CO2 emission increased (doubling from approximately 200 mg C m-2 h-1), while CH4 emissions decreased (from 200 µg C m-2 h-1 to slightly negative) following land use changes. The N2O emissions in the oil palm plantation reached approximately 1,510 µg N m-2 h-1, significantly higher than previous land uses. The CH4 fluxes were driven by groundwater table, humification levels, and C:N ratio, with Methanomicrobia populations dominating methanogenesis and Methylocystis as the main CH4 oxidizer. The N2O fluxes correlated with groundwater table, total nitrogen, and C:N ratio with dominant nirK-type denitrifiers (13-fold nir to nosZ) and a minor role by nitrification (a threefold increase in amoA) in the plantation. Proteobacteria and Acidobacteria encoding incomplete denitrification genes potentially impact N2O emissions. These findings highlighted complex interactions between microbial communities and environmental factors influencing GHG fluxes in altered tropical peatland ecosystems.IMPORTANCETropical peatlands are carbon-rich environments that release significant amounts of greenhouse gases when drained or disturbed. This study assesses the impact of land use change on a secondary tropical peat swamp forest site converted into an oil palm plantation. The transformation lowered groundwater levels and changed soil properties. Consequently, the oil palm plantation site released higher carbon dioxide and nitrous oxide compared to previous land uses. As microbial communities play crucial roles in carbon and nitrogen cycles, this study identified environmental factors associated with microbial diversity, including genes and specific microbial groups related to nitrous oxide and methane emissions. Understanding the factors driving microbial composition shifts and greenhouse gas emissions in tropical peatlands provides baseline information to potentially mitigate environmental consequences of land use change, leading to a broader impact on climate change mitigation efforts and proper land management practices.
    Matched MeSH terms: Bacteria/isolation & purification
  5. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Amidohydrolases/isolation & purification*; Carboxylic Ester Hydrolases/isolation & purification*; Crotalid Venoms/isolation & purification; Endopeptidases/isolation & purification*; Thrombin/isolation & purification*
  6. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
    Matched MeSH terms: Antioxidants/isolation & purification; Arbutin/isolation & purification; Flavonoids/isolation & purification; Hypoglycemic Agents/isolation & purification; Triterpenes/isolation & purification
  7. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Antiviral Agents/isolation & purification; Peptides/isolation & purification; Recombinant Fusion Proteins/isolation & purification; Antimicrobial Cationic Peptides/isolation & purification
  8. Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MM, et al.
    J Ethnopharmacol, 2011 Sep 2;137(2):963-70.
    PMID: 21771650 DOI: 10.1016/j.jep.2011.07.010
    Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
    Matched MeSH terms: Anti-Ulcer Agents/isolation & purification; Antioxidants/isolation & purification*; Plant Extracts/isolation & purification; Flavanones/isolation & purification
  9. Lai JC, Lai HY, Nalamolu KR, Ng SF
    J Ethnopharmacol, 2016 08 02;189:277-89.
    PMID: 27208868 DOI: 10.1016/j.jep.2016.05.032
    ETHNOPHARMACOLOGICAL RELEVANCE: Blechnum orientale Linn. (B. orientale) is a fern traditionally used by the natives as a poultice to treat wounds, boils, ulcers, blisters, abscesses, and sores on the skin.

    AIM OF THE STUDY: To investigate the wound healing ability of a concentrated extract of B. orientale in a hydrogel formulation in healing diabetic ulcer wounds.

    MATERIALS AND METHODS: The water extract from the leaves of B. orientale was separated from the crude methanolic extract and subjected to flash column chromatography techniques to produce concentrated fractions. These fractions were tested for phytochemical composition, tannin content, antioxidative and antibacterial activity. The bioactive fraction was formulated into a sodium carboxymethylcellulose hydrogel. The extract-loaded hydrogels were then characterized and tested on excision ulcer wounds of streptozotocin-induced diabetic rats. Wound size was measured for 14 days. Histopathological studies were conducted on the healed wound tissues to observe for epithelisation, fibroblast proliferation and angiogenesis. All possible mean values were subjected to statistical analysis using One-way ANOVA and post-hoc with Tukey's T-test (P<0.05).

    RESULTS: One fraction exhibited strong antioxidative and antibacterial activity. The fraction was also highly saturated with tannins, particularly condensed tannins. Fraction W5-1 exhibited stronger antioxidant activity compared to three standards (α-Tocopherol, BHT and Trolox-C). Antibacterial activity was also present, and notably bactericidal towards Methicillin-resistant Staphylococcus aureus (MRSA) at 0.25mg/ml. The extract-loaded hydrogels exhibited shear-thinning properties, with high moisture retention ability. The bioactive fraction at 4% w/w was shown to be able to close diabetic wounds by Day 12 on average. Other groups, including controls, only exhibited wound closure by Day 14 (or not at all). Histopathological studies had also shown that extract-treated wounds exhibited re-epithelisation, higher fibroblast proliferation, collagen synthesis, and angiogenesis.

    CONCLUSION: The ethnopharmacological effects of using B. orientale as a topical treatment for external wounds was validated and was also significantly effective in treating diabetic ulcer wounds. Thus, B. orientale extract hydrogel may be presented as a potential treatment for diabetic ulcer wounds.

    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Antioxidants/isolation & purification; Plant Extracts/isolation & purification; Tannins/isolation & purification
  10. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Lactones/isolation & purification; Sesquiterpenes/isolation & purification; Anticarcinogenic Agents/isolation & purification
  11. Dey YN, Wanjari MM, Kumar D, Lomash V, Jadhav AD
    J Ethnopharmacol, 2016 Nov 04;192:183-191.
    PMID: 27426509 DOI: 10.1016/j.jep.2016.07.042
    ETHNOPHARMACOLOGICAL RELEVANCE: Amorphophallus paeoniifolius (Dennst.) Nicolson (Family- Araceae) is a crop of south East Asian origin. In India, its tuber is widely used in ethnomedicinal practices by different tribes for the treatment of piles (hemorrhoids).

    AIM: The present study evaluated the effect of methanolic and aqueous extract of Amorphophallus paeoniifolius tuber on croton oil induced hemorrhoids in rats.

    MATERIALS AND METHODS: The methanolic extract was standardized with the major phenolic compound, betulinic acid, by HPLC. The hemorrhoids were induced by applying 6% croton oil preparation in the ano-rectal region. Rats were orally administered methanolic and aqueous extract at doses of 250 and 500mg/kg, each for 7 days. Pilex (200mg/kg) was used as reference anti-hemorrhoidal drug. Hemorrhoids were assessed on eighth day by measuring hemorrhoidal and biochemical parameters along with histology of ano-rectal tissue.

    RESULTS: Croton oil application caused induction of hemorrhoids as indicated by significant (p<0.001) increase in plasma exudation of Evans blue in ano-rectal tissue, macroscopic severity score and ano-rectal coefficient as compared to normal rats. It significantly (p<0.001) elevated lactate dehydrogenase and cytokines (TNF-α and IL-6) levels in serum and increased myeloperoxidase activity and lipid peroxidation in ano-rectal tissue along with marked histological damage as compared to normal rats. Treatment with tuber extracts and pilex significantly (p<0.05-p<0.001) ameliorated Evans blue exudation, hemorrhoidal parameters and other biochemical parameters with attenuation of tissue damage compared to hemorrhoid control rats. The results indicate that tuber extracts exhibited curative action on hemorrhoids. The aqueous extract showed more pronounced effect than methanolic extract. The effects may be attributed to anti-inflammatory and antioxidant properties.

    CONCLUSION: Results indicate that tuber of Amorphophallus paeoniifolius exhibited curative action on hemorrhoids through anti-inflammatory and antioxidant properties. The study validates the ethnomedicinal use of tuber in hemorrhoids and implicates its therapeutic potential as an anti-hemorrhoidal agent.

    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Antioxidants/isolation & purification; Plant Extracts/isolation & purification; Triterpenes/isolation & purification
  12. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/isolation & purification; Antioxidants/isolation & purification; Enzyme Inhibitors/isolation & purification; Phenols/isolation & purification
  13. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Aporphines/isolation & purification; Dioxoles/isolation & purification; Pyrroles/isolation & purification
  14. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Oils, Volatile/isolation & purification
  15. Khalilpour A, Osman S, Yunus MH, Santhanam A, Vellasamy N, Noordin R
    BMC Res Notes, 2014;7:809.
    PMID: 25406411 DOI: 10.1186/1756-0500-7-809
    Helicobacter pylori is a human pathogen and during the process of infection, antigens from the bacterium elicit strong host humoral immune responses. In our previous report, native H. pylori UreG protein showed good reactivity with sera from H. pylori patients. This study was aimed at producing the recombinant form of the protein (rUreG) and determining its seroreactivities.
    Matched MeSH terms: Bacterial Proteins/isolation & purification; Carrier Proteins/isolation & purification
  16. Moghadamtousi SZ, Rouhollahi E, Karimian H, Fadaeinasab M, Abdulla MA, Kadir HA
    Drug Des Devel Ther, 2014;8:2099-110.
    PMID: 25378912 DOI: 10.2147/DDDT.S70096
    The popular fruit tree of Annona muricata L. (Annonaceae), known as soursop and graviola, is a widely distributed plant in Central and South America and tropical countries. Leaves of A. muricata have been reported to possess antioxidant and anti-inflammatory activities. In this study, the gastroprotective effects of ethyl acetate extract of A. muricata leaves (EEAM) were investigated against ethanol-induced gastric injury models in rats. The acute toxicity test of EEAM in rats, carried out in two doses of 1 g/kg and 2 g/kg, showed the safety of this plant, even at the highest dose of 2 g/kg. The antiulcer study in rats (five groups, n=6) was performed with two doses of EEAM (200 mg/kg and 400 mg/kg) and with omeprazole (20 mg/kg), as a standard antiulcer drug. Gross and histological features showed the antiulcerogenic characterizations of EEAM. There was significant suppression on the ulcer lesion index of rats pretreated with EEAM, which was comparable to the omeprazole effect in the omeprazole control group. Oral administration of EEAM to rats caused a significant increase in the level of nitric oxide and antioxidant activities, including catalase, glutathione, and superoxide dismutase associated with attenuation in gastric acidity, and compensatory effect on the loss of gastric wall mucus. In addition, pretreatment of rats with EEAM caused significant reduction in the level of malondialdehyde, as a marker for oxidative stress, associated with an increase in prostaglandin E2 activity. Immunohistochemical staining also demonstrated that EEAM induced the downregulation of Bax and upregulation of Hsp70 proteins after pretreatment. Collectively, the present results suggest that EEAM has a promising antiulcer potential, which could be attributed to its suppressive effect against oxidative damage and preservative effect toward gastric wall mucus.
    Matched MeSH terms: Anti-Ulcer Agents/isolation & purification; Plant Extracts/isolation & purification
  17. Shah MD, Gnanaraj C, Haque AT, Iqbal M
    Pharm Biol, 2015 Jan;53(1):31-9.
    PMID: 25243876 DOI: 10.3109/13880209.2014.909502
    Nephrolepis biserrata L. (Nephrolepidaceae) has been used in folk medicine for protection against different diseases.
    Matched MeSH terms: Antioxidants/isolation & purification; Plant Extracts/isolation & purification
  18. Ariffin TA, Mohamad S, Yusuf WN, Shueb RH
    J Infect Dev Ctries, 2014 Aug;8(8):1063-7.
    PMID: 25116676 DOI: 10.3855/jidc.4095
    INTRODUCTION: The widespread use of highly active antiretroviral therapy (HAART) and continuous reports of HIV-1 strains developing resistance to these drugs is rather alarming, as transmission of resistant viruses to newly infected persons is possible. This study aimed to determine HIV-1 subtypes and the prevalence of primary mutations associated with antiretroviral (ARV) resistance among treatment-naive prisoners on the east coast of Malaysia.
    METHODOLOGY: Viral RNA was extracted from plasma samples of 21 treatment-naive prisoners. Protease (PR) and reverse transcriptase (RT) regions were amplified and sequenced. Stanford HIV database algorithms were used for interpretation of resistance, and phylogenetic analysis was performed for subtype assignment.
    RESULTS: In the PR gene, no antiviral resistance-associated mutation was detected. For RT-associated mutations, K103N was the most prevalent in sequenced samples (14.3%). Genetic subtyping on the pol gene revealed that the majority of the prisoners were infected with subtype CRF33_01B (52.4%).
    CONCLUSION: Continuous surveillance of newly infected individuals is required to help strategize the best antiviral treatment for these patients.
    Matched MeSH terms: RNA, Viral/isolation & purification; HIV-1/isolation & purification
  19. Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Khosroushahi AY
    Anaerobe, 2014 Dec;30:51-9.
    PMID: 25168457 DOI: 10.1016/j.anaerobe.2014.08.009
    Lactobacillus and Lactococcus strains isolated from food products can be introduced as probiotics because of their health-promoting characteristics and non-pathogenic nature. This study aims to perform the isolation, molecular identification, and probiotic characterization of Lactobacillus and Lactococcus strains from traditional Iranian dairy products. Primary probiotic assessments indicated high tolerance to low pH and high bile salt conditions, high anti-pathogenic activities, and susceptibility to high consumption antibiotics, thus proving that both strains possess probiotic potential. Cytotoxicity assessments were used to analyze the effects of the secreted metabolite on different cancer cell lines, including HT29, AGS, MCF-7, and HeLa, as well as a normal human cell line (HUVEC). Results showed acceptable cytotoxic properties for secreted metabolites (40 μg/ml dry weight) of Lactococcus lactis subsp. Lactis 44Lac. Such performance was similar to that of Taxol against all of the treated cancer cell lines; however, the strain exhibited no toxicity on the normal cell line. Cytotoxic assessments through flow cytometry and fluorescent microscopy demonstrated that apoptosis is the main cytotoxic mechanism for secreted metabolites of L. lactis subsp. Lactis 44Lac. By contrast, the effects of protease-treated metabolites on the AGS cell line verified the protein nature of anti-cancer metabolites. However, precise characterizations and in vitro/in vivo investigations on purified proteins should be conducted before these metabolites are introduced as potential anti-cancer therapeutics.
    Matched MeSH terms: Lactococcus lactis/isolation & purification; Lactobacillus plantarum/isolation & purification
  20. Lee SC, Ngui R, Tan TK, Muhammad Aidil R, Lim YA
    PLoS One, 2014;9(9):e107980.
    PMID: 25248116 DOI: 10.1371/journal.pone.0107980
    Soil-transmitted helminth (STH) infections have been documented among these minority groups since 1938. However the prevalence of STH is still high among these communities. Most studies tend to consider the Orang Asli (indigenous) as a homogenous group. In contrary, different subtribes have their own cultural practices. To understand this variation better, we studied the prevalence and associated factors of STH and other gut parasitic infections among two common subtribes (i.e. Temuan and Temiar). Results showed that the prevalence of the overall STH infections was higher in the Temuan subtribe (53.2% of 171) compared to the Temiar subtribe (52.7% of 98). Trichuris trichiura (46.2%) was the most prevalent parasite in the Temuan subtribe, followed by Ascaris spp. (25.7%) and hookworm (4.1%). In contrast, Ascaris spp. (39.8%) was more prevalent among the Temiar subtribe, preceded by T. trichiura (35.7%) and finally hookworm (8.3%). There were also co-infections of helminthiasis and intestinal protozoa among both Temuan and Temiar subtribes with rates being three times higher among the Temiar compared to Temuan. The most common co-infection was with Entamoeba histolytica/dispar/moshkovskii (n = 24; 24.5%, 16.0-33.0), followed by Giardia spp. (n = 3; 3.1%, -0.3-6.5). In Temuan, STH infection individuals were also infected with Entamoeba histolytica/dispar/moshkovskii (n = 11; 6.4%, 5.0-13.8), Cryptosporidium spp. (n = 3, 1.8%, -0.2-3.8) and Giardia spp. (n = 2, 1.2%, -0.4-2.8). In comparison, there was no Cryptosporidium spp. detected among the Temiar. However, it was interesting to note that there was an occurrence of co-infection of intestinal helminthiasis and sarcocystosis (intestinal) in a Temiar individual. The last report of sarcocystosis (muscular) among the Orang Asli was in 1978. The present study highlighted the importance of understanding the variation of infections amongst the different Orang Asli subtribes. It is vital to note these differences and use this knowledge to customise effective control measures for the various subtribes.
    Matched MeSH terms: Helminths/isolation & purification; Sarcocystis/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links