Groundwater, the world's most abundant source of freshwater, is rapidly depleting in many regions due to a variety of factors. Accurate forecasting of groundwater level (GWL) is essential for effective management of this vital resource, but it remains a complex and challenging task. In recent years, there has been a notable increase in the use of machine learning (ML) techniques to model GWL, with many studies reporting exceptional results. In this paper, we present a comprehensive review of 142 relevant articles indexed by the Web of Science from 2017 to 2023, focusing on key ML models, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector regression (SVR), evolutionary computing (EC), deep learning (DL), ensemble learning (EN), and hybrid-modeling (HM). We also discussed key modeling concepts such as dataset size, data splitting, input variable selection, forecasting time-step, performance metrics (PM), study zones, and aquifers, highlighting best practices for optimal GWL forecasting with ML. This review provides valuable insights and recommendations for researchers and water management agencies working in the field of groundwater management and hydrology.
The effective reduction of hazardous organic pollutants in wastewater is a pressing global concern, necessitating the development of advanced treatment technologies. Pollutants such as nitrophenols and dyes, which pose significant risks to both human and aquatic health, making their reduction particularly crucial. Despite the existence of various methods to eliminate these pollutants, they are not without limitations. The utilization of nanomaterials as catalysts for chemical reduction exhibits a promising alternative owing to their distinguished catalytic activity and substantial surface area. For catalytically reducing the pollutants NaBH4 has been utilized as a useful source for it because it reduces the pollutants quiet efficiently and it also releases hydrogen gas as well which can be used as a source of energy. This paper provides a comprehensive review of recent research on different types of nanomaterials that function as catalysts to reduce organic pollutants and also generating hydrogen from NaBH4 methanolysis while also evaluating the positive and negative aspects of nanocatalyst. Additionally, this paper examines the features effecting the process and the mechanism of catalysis. The comparison of different catalysts is based on size of catalyst, reaction time, rate of reaction, hydrogen generation rate, activation energy, and durability. The information obtained from this paper can be used to steer the development of new catalysts for reducing organic pollutants and generation hydrogen by NaBH4 methanolysis.
Accurate water level prediction for both lake and river is essential for flood warning and freshwater resource management. In this study, three machine learning algorithms: multi-layer perceptron neural network (MLP-NN), long short-term memory neural network (LSTM) and extreme gradient boosting XGBoost were applied to develop water level forecasting models in Muda River, Malaysia. The models were developed using limited amount of daily water level and meteorological data from 2016 to 2018. Different input scenarios were tested to investigate the performance of the models. The results of the evaluation showed that the MLP model outperformed both the LSTM and the XGBoost models in predicting water levels, with an overall accuracy score of 0.871 compared to 0.865 for LSTM and 0.831 for XGBoost. No noticeable improvement has been achieved after incorporating meteorological data into the models. Even though the lowest reported performance was reported by the XGBoost, it is the faster of the three algorithms due to its advanced parallel processing capabilities and distributed computing architecture. In terms of different time horizons, the LSTM model was found to be more accurate than the MLP and XGBoost model when predicting 7 days ahead, demonstrating its superiority in capturing long-term dependencies. Therefore, it can be concluded that each ML model has its own merits and weaknesses, and the performance of different ML models differs on each case because these models depends largely on the quantity and quality of data available for the model training.
The study explores the spatio-temporal variation of water quality parameters in the Hooghly estuary, which is considered an ecologically-stressed shallow estuary and a major distributary for the Ganges River. The estimated parameters are chlorophyll-a, total suspended matter (TSM), and chromophoric dissolved organic matter (CDOM). The Sentinel-3 OLCI remote sensing imageries were analyzed for the duration of October 2018 to February 2019. We observed that the water quality of the Hooghly estuaries is comparatively low-oxygenated, mesotrophic, and phosphate-limited. Ongoing channel dredging for maintaining shipping channel depth keeps the TSM in the estuary at an elevated level, with the highest amount of TSM observed during March of 2019 (41.59g m-3) at station A, upstream point. Since the pre-monsoon season, TSM data shows a decreasing trend towards the mouth of the estuary. Chl-a concentration is higher during pre-monsoon than monsoon and post-monsoon periods, with the highest value observed in April at 1.09 mg m-3 in station D during the pre-monsoon period. The CDOM concentration was high in the middle section (January-February) and gradually decreased towards the estuary's head and mouth. The highest CDOM was found in February at locations C and D during the pre-monsoon period. Every station shows a significant correlation among CDOM, TSM, and Chl-a measured parameters. Based on our satellite data analysis, it is recommended that SNAP C2RCC be regionally used for TSM, Chl-a, and CDOM for water quality product retrieval and in various algorithms for the Hooghly estuary monitoring.
A modeling framework utilizing the coactive neuro-fuzzy inference system (CANFIS) has been developed for multi-lead time groundwater level (GWL) forecasting in four different wells located in Texas and Florida, USA. Various model input combinations, including GWL, precipitation, temperature, and surface water level variables, have been derived based on proposed correlation analysis using singular spectrum analysis (SSA) remainders. The models have been trained on data subsets of varying lengths to identify the optimal training data duration. Additionally, we have introduced the bagging ensemble learning method to enhance the performance of the CANFIS model. As part of a comprehensive model evaluation process, the best-performing CANFIS model for each forecasting scenario has undergone uncertainty analysis using bootstrap sampling. Our results reveal that the CANFIS model performs satisfactorily for daily forecasting but leaves room for improvement in monthly forecasting, particularly for two-month and three-month ahead forecasts. Moreover, we have identified several optimal input combinations, highlighting the significance of the temperature variable in monthly forecasting. Furthermore, our findings indicate that additional training data does not necessarily lead to improved performance. The ensemble CANFIS model has demonstrated significant performance enhancement, particularly for monthly forecasting. Finally, the CANFIS model uncertainty analysis has shown satisfactory results for daily forecasting scenarios, while monthly forecasting models exhibit higher uncertainties, particularly during periods with distinctly different GWL fluctuation patterns.
Coal power plants adversely impact air pollution, but they also pose a risk to our water sources. Discharge wastewater from power plants may degrade the quality of nearby water bodies. This study evaluates the potential water-related environmental impacts of electricity generation at an ultra-supercritical coal power plant in Malaysia using the life cycle assessment method. The inventory data were gathered from a Malaysian power plant, and supporting data were taken from the relevant literature. Utilizing the ReCiPe 2016 impact assessment method, this study analyses the mid-point impact categories of freshwater eutrophication (FEP), marine eutrophication (MEP), freshwater ecotoxicity (FETP), and marine ecotoxicity (METP). The results indicate that METP is the leading risk, with an average impact of 1.94 × 10-2 kg 1,4-DCB per kWh electricity generated, followed by FETP (1.40 × 10-2 kg 1,4-DCB), FEP (4.66 × 10-4 kg P eq), and MEP (2.95 × 10-5 kg N eq). About 95% of the mid-point impact is due to the extraction and processing of hard coal. These findings underscore a critical aspect of environmental management at the supply chain level. Furthermore, mitigating direct emissions from power generation could reduce the mid-point impact, as demonstrated by comparisons with previous research.
The power generation sector consumes significant amounts of water. A comprehensive water footprint (WF) assessment helps identify and monitor the processes consuming high amounts of water. This research evaluates the water footprint (WF) of electricity generation at a USC coal power plant, integrating on-site data for enhanced reliability. Based on the Water Footprint Assessment Manual, the electricity WF includes supply chain and operational WF. This study exhibits that the average electricity WF is 2.96 m3/MWh. The supply chain WF accounts for 95% of the total electricity WF, while operational WF contributes 5%. The blue WF accounts for 9.9% of the total electricity WF, while the grey water footprint accounts for 90.1%. The results of this research show a significant difference in the distribution of blue and grey WF in electricity WF. Factors contributing to the differences include the amount of coal consumption, power generation technology and power plant cooling technology. Furthermore, this study shows that grey WF depends on the concentration of pollutants considered. This research also conducted a WF impact assessment on local water resources and found that the blue and grey operational WF contributes to low impact. Monitoring the water footprint associated with electricity generation at a coal power plant would provide a more enhanced understanding of water consumption patterns, which could help influence water resources management.
An outbreak of respiratory illness which is proven to be infected by a 2019 novel coronavirus (2019-nCoV) officially named as Coronavirus Disease 2019 (COVID-19) was first detected in Wuhan, China and has spread rapidly in other parts of China as well as other countries around the world, including Malaysia. The first case in Malaysia was identified on 25 January 2020 and the number of cases continue to rise since March 2020. Therefore, 2020 Malaysia Movement Control Order (MCO) was implemented with the aim to isolate the source of the COVID-19 outbreak. As a result, there were fewer number of motor vehicles on the road and the operation of industries was suspended, ergo reducing emissions of hazardous air pollutants in the atmosphere. We had acquired the Air Pollutant Index (API) data from the Department of Environment Malaysia on hourly basis before and during the MCO with the aim to track the changes of fine particulate matter (PM2.5) at 68 air quality monitoring stations. It was found that the PM2.5 concentrations showed a high reduction of up to 58.4% during the MCO. Several red zone areas (>41 confirmed COVID-19 cases) had also reduced of up to 28.3% in the PM2.5 concentrations variation. The reduction did not solely depend on MCO, thus the researchers suggest a further study considering the influencing factors that need to be adhered to in the future.
In the past few decades, there has been a rapid growth in the concentration of nitrogenous compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to increasing agricultural and industrial activities. These nitrogenous compounds are mainly responsible for eutrophication when present in river water, and for 'blue baby syndrome' when present in drinking water. High concentrations of these compounds in rivers may eventually lead to the closure of treatment plants. This study presents a training and a selection approach to develop an optimum artificial neural network model for predicting monthly average nitrate-N and monthly average ammonia-N. Several studies have predicted these compounds, but most of the proposed procedures do not involve testing various model architectures in order to achieve the optimum predicting model. Additionally, none of the models have been trained for hydrological conditions such as the case of Malaysia. This study presents models trained on the hydrological data from 1981 to 2017 for the Langat River in Selangor, Malaysia. The model architectures used for training are General Regression Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural Network (RBFNN). These models were trained for various combinations of internal parameters, input variables and model architectures. Post-training, the optimum performing model was selected based on the regression and error values and plot of predicted versus observed values. Optimum models provide promising results with a minimum overall regression value of 0.92.
Following the publication of the article it has come to the authors' attention that the first panel of Fig. 11 has been repeated with the second panel of Fig. 11.
Suspended sediment load (SSL) estimation is a required exercise in water resource management. This article proposes the use of hybrid artificial neural network (ANN) models, for the prediction of SSL, based on previous SSL values. Different input scenarios of daily SSL were used to evaluate the capacity of the ANN-ant lion optimization (ALO), ANN-bat algorithm (BA) and ANN-particle swarm optimization (PSO). The Goorganrood basin in Iran was selected for this study. First, the lagged SSL data were used as the inputs to the models. Next, the rainfall and temperature data were used. Optimization algorithms were used to fine-tune the parameters of the ANN model. Three statistical indexes were used to evaluate the accuracy of the models: the root-mean-square error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE). An uncertainty analysis of the predicting models was performed to evaluate the capability of the hybrid ANN models. A comparison of models indicated that the ANN-ALO improved the RMSE accuracy of the ANN-BA and ANN-PSO models by 18% and 26%, respectively. Based on the uncertainty analysis, it can be surmised that the ANN-ALO has an acceptable degree of uncertainty in predicting daily SSL. Generally, the results indicate that the ANN-ALO is applicable for a variety of water resource management operations.
In recent decades, various conventional techniques have been formulated around the world to evaluate the overall water quality (WQ) at particular locations. In the present study, back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and one multilinear regression (MLR) are considered for the prediction of water quality index (WQI) at three stations, namely Nizamuddin, Palla, and Udi (Chambal), across the Yamuna River, India. The nonlinear ensemble technique was proposed using the neural network ensemble (NNE) approach to improve the performance accuracy of the single models. The observed WQ parameters were provided by the Central Pollution Control Board (CPCB) including dissolved oxygen (DO), pH, biological oxygen demand (BOD), ammonia (NH3), temperature (T), and WQI. The performance of the models was evaluated by various statistical indices. The obtained results indicated the feasibility of the developed data intelligence models for predicting the WQI at the three stations with the superior modelling results of the NNE. The results also showed that the minimum values for root mean square (RMS) varied between 0.1213 and 0.4107, 0.003 and 0.0367, and 0.002 and 0.0272 for Nizamuddin, Palla, and Udi (Chambal), respectively. ANFIS-M3, BPNN-M4, and BPNN-M3 improved the performance with regard to an absolute error by 41%, 4%, and 3%, over other models for Nizamuddin, Palla, and Udi (Chambal) stations, respectively. The predictive comparison demonstrated that NNE proved to be effective and can therefore serve as a reliable prediction approach. The inferences of this paper would be of interest to policymakers in terms of WQ for establishing sustainable management strategies of water resources.
Iraq is facing a dire water crisis due to the decrease in water quantities flow in Tigris and Euphrates Rivers. Due to population growth, several studies estimated the water shortage in 2035 to be 44 Billion Cubic Meter (BCM). Thus, Water Budget-Salt Balance Model (WBSBM) has been developed, applied and examined for the Euphrates River basin to compute the net water saving from Non-Conventional Water Resources (NCWRs). WBSBM includes 4-stages; the first is to identify the required data correspond to the conventional water resources in the study-area. The second stage is demonstrating the water-users activities. Thirdly, develop model through the proposed NCWR projects that reflect the required data. The final stage involves net water saving computation while applying all the NCWR projects simultaneously. The results obtained the optimal potential net water saving amount, which are 6.823 and 6.626 BCM/year in 2025 and 2035, respectively. In conclusion, the proposed WBSBM model has comprehensively examined different scenarios of utilizing NCWRs and has determined the optimal potential the net water saving amounts.
To maintain human health and purity of drinking water, it is crucial to eliminate harmful chemicals such as nitrophenols and azo dyes, considering their natural presence in the surroundings. In this particular research study, the application of machine learning techniques was employed in order to make an estimation of the performance of reduction catalysis in the context of ecologically detrimental nitrophenols and azo dyes contaminants. The catalyst utilized in the experiment was Ag@CMC, which proved to be highly effective in eliminating various contaminants found in water, like 4-nitrophenol (4-NP). The experiments were carefully conducted at various time intervals, and the machine learning procedures used in this study were all employed to forecast catalytic performance. The evaluation of the performance of such algorithms were done by means of Mean Absolute Error. The noteworthy findings of this research indicated that the ADAM and LSTM algorithm exhibited the most favourable performance in the case of toxic compounds i.e. 4-NP. Moreover, the Ag@CMC catalyst demonstrated an impressive reduction efficiency of 98 % against nitrophenol in just 8 min. Thus, based on these compelling results, it can be concluded that Ag@CMC works as a highly effective catalyst for practical applications in real-world scenarios.
Cities are growing geographically in response to the enormous increase in urban population; consequently, comprehending growth and environmental changes is critical for long-term planning. Urbanization transforms naturally permeable surfaces into impermeable surfaces, causing an increase in urban land surface temperature, leading to the phenomenon known as urban heat islands. The urban heat islands are noticeable across Malaysia's rural communities and villages, particularly in Kuala Lumpur. These effects must be addressed to slow, if not halt, climate change and meet the Paris Agreement's 2030 goal. The study posits an application of thermal remote sensing utilizing a space-borne satellite-based technique to demonstrate urban evolution for urban heat island analysis and its relationship to land surface temperature. The urban heat island (UHI) was analyzed by converting infrared radiation into visible thermal images utilizing thermal imaging from remote sensing techniques. The heat island is validated by reference to the characteristics of the normalized difference vegetation index (NDVI), which define the land surface temperature (LST) of distinct locations. Based on the digital information from the satellite, the highest temperature difference between urban and rural regions for a few chosen cities in 2013 varied from 10.8 to 25.5 °C, while in 2021, it ranged from 16.1 to 26.73 °C, highlighting crucial temperature changes. The results from ANOVA test has substantially strengthened the credibility of the significant temperature changes. Some notable reveals are as follows: The Sungai Batu area, due to its rapid development and industry growth, was more vulnerable to elevated urban heat due to reduced vegetation cover; therefore, higher relative vulnerability. Contrary, the Bukit Ketumbar area, which region lies in the woodland region, experienced the lowest, with urban heat islands reading from 2013 at -0.3044 and 0.0154 in 2021. It shows that despite having urban heat islands increase two-fold from 2013 to 2021, increasing the amount of vegetation coverage is a simple and effective way of reducing the urban heat island effect, as evidenced by the low urban heat islands in the Bukit Ketumbar woodland region. The study findings are critical for advising municipal officials and urban planners to decrease urban heat islands by investing in open green spaces.
In consideration of the distinct behavior of machine learning (ML) algorithms, six well-defined ML used were carried out in this study for predicting sea level on a day-to-day basis. Data compiled from 1985 to 2018 was utilized for training and testing the developed models. An assessment of the multiple statistics-driven regression algorithms resulted such that each tested location was associated with a particular preferred model. The following were the developed best models for their respective study areas: In Peninsular Malaysia, the interactions linear regression model was the best at Pulau Langkawi (RMSE = 19.066), the Matern 5/2 gaussian process regression model at Geting (RMSE = 49.891), and the trilayered artificial neural network at Pulau Pinang (RMSE = 20.026), while the linear regression model was the best at Sandakan in Sabah, East Malaysia (RMSE = 14.054). Other metrics, such as MAE and R-square, were also at their best values, each providing its best values, further substantiating the RMSE respectively, at each of the study areas. These empirical statistics (or metrics) also revealed that despite employing sea level as the sole parameter, results obtained were exceptional better when utilizing a 7-day lag, regardless of the model used. Notably, lag variables with less than a 7-day lag could degrade the model's accuracy in representing ground reality. The study emphasizes the importance of thorough training and testing of ML to aid decision-makers in developing mitigation actions for the climate change phenomena of sea level rise through reliable ML.
This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.
A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XPS, XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H2) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe0-CH/CB excelled in contaminant reduction (7.0 min). In addition to the synthesis and characterization of the catalytic system, various factors, such as NaBH₄ amount, catalyst quantity, pollutant concentration, and reaction temperature were optimized to maximize its overall efficacy and efficiency. Fe0-CH/CB achieved the best reaction rate of 0.850 min-1 for 4-NP reduction, while CH/CB had a hydrogen generation rate (HGR) of 3500 ml.g-1.min-1. The Fe0-CH/CB was able to achieve the 4-NP reduction percentage of >95 % over 5 times during the recyclability tests. However, a slight decrease in reduction time was observed as the reaction rate dropped to 0.716 min-1 after 5 cycles, but the catalyst remained effective, underscoring its practical potential for environmental remediation, water treatment, and sustainable energy production.
Multi-walled carbon nanotubes (CNTs) functionalized with a deep eutectic solvent (DES) were utilized to remove mercury ions from water. An artificial neural network (ANN) technique was used for modelling the functionalized CNTs adsorption capacity. The amount of adsorbent dosage, contact time, mercury ions concentration and pH were varied, and the effect of parameters on the functionalized CNT adsorption capacity is observed. The (NARX) network, (FFNN) network and layer recurrent (LR) neural network were used. The model performance was compared using different indicators, including the root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (R2) and relative error (RE). Three kinetic models were applied to the experimental and predicted data; the pseudo second-order model was the best at describing the data. The maximum RE, R2 and MSE were 9.79%, 0.9701 and 1.15 × 10-3, respectively, for the NARX model; 15.02%, 0.9304 and 2.2 × 10-3 for the LR model; and 16.4%, 0.9313 and 2.27 × 10-3 for the FFNN model. The NARX model accurately predicted the adsorption capacity with better performance than the FFNN and LR models.
Reference evapotranspiration (ET0) plays a fundamental role in irrigated agriculture. The objective of this study is to simulate monthly ET0 at a meteorological station in India using a new method, an improved support vector machine (SVM) based on the cuckoo algorithm (CA), which is known as SVM-CA. Maximum temperature, minimum temperature, relative humidity, wind speed and sunshine hours were selected as inputs for the models used in the simulation. The results of the simulation using SVM-CA were compared with those from experimental models, genetic programming (GP), model tree (M5T) and the adaptive neuro-fuzzy inference system (ANFIS). The achieved results demonstrate that the proposed SVM-CA model is able to simulate ET0 more accurately than the GP, M5T and ANFIS models. Two major indicators, namely, root mean square error (RMSE) and mean absolute error (MAE), indicated that the SVM-CA outperformed the other methods with respective reductions of 5-15% and 5-17% compared with the GP model, 12-21% and 10-22% compared with the M5T model, and 7-15% and 5-18% compared with the ANFIS model, respectively. Therefore, the proposed SVM-CA model has high potential for accurate simulation of monthly ET0 values compared with the other models.