Displaying publications 21 - 34 of 34 in total

Abstract:
Sort:
  1. Tan AF, Thota P, Sakam SSB, Lew YL, Rajahram GS, William T, et al.
    Sci Rep, 2023 Mar 23;13(1):4760.
    PMID: 36959462 DOI: 10.1038/s41598-023-31839-7
    Plasmodium knowlesi is the major cause of zoonotic malaria in Southeast Asia. Rapid and accurate diagnosis enables effective clinical management. A novel malaria diagnostic tool, Gazelle (Hemex Health, USA) detects haemozoin, a by-product of haem metabolism found in all Plasmodium infections. A pilot phase refined the Gazelle haemozoin identification algorithm, with the algorithm then tested against reference PCR in a larger cohort of patients with P. knowlesi mono-infections and febrile malaria-negative controls. Limit-of-detection analysis was conducted on a subset of P. knowlesi samples serially diluted with non-infected whole blood. The pilot phase of 40 P. knowlesi samples demonstrated 92.5% test sensitivity. P. knowlesi-infected patients (n = 203) and febrile controls (n = 44) were subsequently enrolled. Sensitivity and specificity of the Gazelle against reference PCR were 94.6% (95% CI 90.5-97.3%) and 100% (95% CI 92.0-100%) respectively. Positive and negative predictive values were 100% and 98.8%, respectively. In those tested before antimalarial treatment (n = 143), test sensitivity was 96.5% (95% CI 92.0-98.9%). Sensitivity for samples with ≤ 200 parasites/µL (n = 26) was 84.6% (95% CI 65.1-95.6%), with the lowest parasitaemia detected at 18/µL. Limit-of-detection (n = 20) was 33 parasites/µL (95% CI 16-65%). The Gazelle device has the potential for rapid, sensitive detection of P. knowlesi infections in endemic areas.
  2. Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, et al.
    PLoS Negl Trop Dis, 2024 Jan;18(1):e0011570.
    PMID: 38252650 DOI: 10.1371/journal.pntd.0011570
    BACKGROUND: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection.

    METHODS & RESULTS: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission.

    DISCUSSION: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.

  3. Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, et al.
    medRxiv, 2023 Aug 08.
    PMID: 37609228 DOI: 10.1101/2023.08.04.23293633
    BACKGROUND: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection.

    METHODS & RESULTS: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission.

    DISCUSSION: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.

  4. Abraham P, McMullin C, William T, Rajahram GS, Jelip J, Teo R, et al.
    medRxiv, 2024 May 03.
    PMID: 38746350 DOI: 10.1101/2024.05.02.24306734
    BACKGROUND: The emergence of the zoonotic monkey parasite Plasmodium knowlesi as the dominant cause of malaria in Malaysia has disrupted current national WHO elimination goals. Malaysia has free universal access to malaria care; however, out-of-pocket costs are unknown. This study estimated household costs of illness attributable to malaria due to P. knowlesi against other non-zoonotic Plasmodium species infections in Sabah, Malaysia.

    METHODOLOGY/PRINCIPAL FINDINGS: Household costs were estimated from patient-level surveys collected from four hospitals between 2013 and 2016. Direct costs including medical and associated travel costs, and indirect costs due to lost productivity were included. One hundred and fifty-two malaria cases were enrolled: P. knowlesi (n=108), P. vivax (n=22), P. falciparum (n=16), and P. malariae (n=6). Costs were inflated to 2022 Malaysian Ringgits and reported in United States dollars (US$). Across all cases, the mean total costs were US$138 (SD=108), with productivity losses accounting for 58% of costs (US$80; SD=73). P. vivax had the highest mean total household cost at US$210, followed by P. knowlesi (US$127), P. falciparum (US$126), and P. malariae (US$105). Most patients (80%) experienced direct health costs above 10% of monthly income, with 58 (38%) patients experiencing health spending over 25% of monthly income, consistent with catastrophic health expenditure.

    CONCLUSIONS/SIGNIFICANCE: Despite Malaysia's free health-system care for malaria, patients and families face other related medical, travel, and indirect costs. Household out-of-pocket costs were driven by productivity losses; primarily attributed to infections in working-aged males in rural agricultural-based occupations. Costs for P. knowlesi were comparable to P. falciparum and lower than P. vivax. The higher P. vivax costs related to direct health facility costs for repeat monitoring visits given the liver-stage treatment required.

    AUTHOR SUMMARY: Knowlesi malaria is due to infection with a parasite transmitted by mosquitos from monkeys to humans. Most people who are infected work or live near the forest. It is now the major type of malaria affecting humans in Malaysia. The recent increase of knowlesi malaria cases in humans has impacted individuals, families, and health systems in Southeast Asia. Although the region has made substantial progress towards eliminating human-only malaria species, knowlesi malaria threatens elimination targets as traditional control measures do not address the parasite reservoir in monkeys. The economic burden of illness due to knowlesi malaria has not previously been estimated or subsequently compared with other malaria species. We collected data on the cost of illness to households in Sabah, Malaysia, to estimate their related total economic burden. Medical costs and time off work and usual activities were substantial in patients with the four species of malaria diagnosed during the time of this study. This research highlights the financial burden which households face when seeking care for malaria in Malaysia, despite the free treatment provided by the government.

  5. Zeid M, Sayedin H, Sridharan N, Narayanaswamy A, Abul F, Jacob PT, et al.
    Cureus, 2022 Dec;14(12):e32253.
    PMID: 36620813 DOI: 10.7759/cureus.32253
    We aimed to conduct a systematic review and meta-analysis to summarize the current evidence regarding the role of super-mini percutaneous nephrolithotomy (SMP), which refers to a 7-Fr nephroscope placed through a tract sized 10-14 Fr, in treating renal stones and compare its outcomes with the standard mini-percutaneous nephrolithotomy (PCNL) techniques. A systematic literature search was conducted on the Medline database via PubMed and SCOPUS until May 2022 to retrieve the relevant studies. The titles and abstracts of unique records were screened for eligibility, followed by the full-text screening of potentially eligible abstracts. Data extraction was performed by two independent reviewers. The risk of bias assessment was conducted based on the study design. Open Meta (Analyst) and Review Manager 5.4 were used to perform all analyses. A total of 14 studies (n = 4,323 patients) were included, with two randomized controlled trials, one single-arm trial, and 11 cohort studies. The stone-free rate (SFR) of SMP was 91.4%. The pooled analysis showed no significant difference between SFR in mini-PCNL (mean difference (MD) = 1.03, 95% confidence interval (CI) = (0.99, 1.06), p = 0.12) and flexible ureteroscopy (MD = 0.84, 95% CI = (0.4, 1.76), p = 0.65]. On the other hand, SMP had a better SFR rate when compared with retrograde intrarenal surgery (MD = 1.3, 95% CI = (1.01, 1.66), p = 0.04). The pooled mean operative time of SMP was 49.44 minutes (95% CI = (41, 57.88), p < 0.001), which was longer than mini-PCNL (MD = 1.92, p < 0.001) and shorter than ureteroscopy (MD = -17.17, p < 0.00001). In the SMP group, the postoperative complications included fever (>38°C), pain, and hematuria, with an incidence of 7.6%, 2.3%, and 3.4%, respectively. The mean length of hospital stay after SMP was 2.4 days (95% CI = (2.17, 2.7), p < 0.001). The current evidence suggests that SMP is a safe and effective technique in the management of renal stones in both children and adults.
  6. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

  7. Cooper DJ, Grigg MJ, Plewes K, Rajahram GS, Piera KA, William T, et al.
    Clin Infect Dis, 2022 Oct 12;75(8):1379-1388.
    PMID: 35180298 DOI: 10.1093/cid/ciac152
    BACKGROUND: Acetaminophen inhibits cell-free hemoglobin-induced lipid peroxidation and improves renal function in severe falciparum malaria but has not been evaluated in other infections with prominent hemolysis, including Plasmodium knowlesi malaria.

    METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis.

    RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively).

    CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis.

    CLINICAL TRIALS REGISTRATION: NCT03056391.

  8. Tan AF, Sakam SSB, Rajahram GS, William T, Abd Rachman Isnadi MF, Daim S, et al.
    Front Cell Infect Microbiol, 2022;12:1023219.
    PMID: 36325471 DOI: 10.3389/fcimb.2022.1023219
    BACKGROUND: Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets.

    METHODS: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH.

    RESULTS: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs.For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels.

    CONCLUSION: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria.

  9. Woolley SD, Grigg MJ, Marquart L, Gower JSE, Piera K, Nair AS, et al.
    EBioMedicine, 2024 Jul;105:105189.
    PMID: 38851058 DOI: 10.1016/j.ebiom.2024.105189
    BACKGROUND: The interaction between iron status and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria.

    METHODS: We retrieved data and samples from 55 participants (19 female) enrolled in malaria VIS, and 171 patients (45 female) with malaria and 30 healthy controls (13 female) enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA.

    FINDINGS: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline ferritin was associated with post-treatment increases in liver transaminase levels. In Malaysian patients with malaria, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. By day 28, hepcidin had normalised; however, ferritin and sTfR both remained elevated.

    INTERPRETATION: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency.

    FUNDING: National Health and Medical Research Council (Program Grant 1037304, Project Grants 1045156 and 1156809; Investigator Grants 2016792 to BEB, 2016396 to JCM, 2017436 to MJG); US National Institute of Health (R01-AI116472-03); Malaysian Ministry of Health (BP00500420).

  10. Woolley SD, Grigg MJ, Marquart L, Gower J, Piera K, Nair AS, et al.
    medRxiv, 2023 Dec 21.
    PMID: 38196596 DOI: 10.1101/2023.12.19.23300265
    BACKGROUND: The interaction between iron deficiency and malaria is incompletely understood. We evaluated longitudinal changes in iron homeostasis in volunteers enrolled in malaria volunteer infection studies (VIS) and in Malaysian patients with falciparum and vivax malaria.

    METHODS: We retrieved samples and associated data from 55 participants enrolled in malaria VIS, and 171 malaria patients and 30 healthy controls enrolled in clinical studies in Malaysia. Ferritin, hepcidin, erythropoietin, and soluble transferrin receptor (sTfR) were measured by ELISA.

    RESULTS: In the VIS, participants' parasitaemia was correlated with baseline mean corpuscular volume (MCV), but not iron status (ferritin, hepcidin or sTfR). Ferritin, hepcidin and sTfR all increased during the VIS. Ferritin and hepcidin normalised by day 28, while sTfR remained elevated. In VIS participants, baseline iron status (ferritin) was associated with post-treatment increases in liver transaminase levels. In Malaysian malaria patients, hepcidin and ferritin were elevated on admission compared to healthy controls, while sTfR increased following admission. Hepcidin normalised by day 28; however, ferritin and sTfR both remained elevated 4 weeks following admission.

    CONCLUSION: Our findings demonstrate that parasitaemia is associated with an individual's MCV rather than iron status. The persistent elevation in sTfR 4 weeks post-infection in both malaria VIS and clinical malaria may reflect a causal link between malaria and iron deficiency.

  11. Murdiyarso LS, Rajahram GS, Tan AF, Piera KA, William T, Oyong DA, et al.
    Am J Trop Med Hyg, 2025 Jan 08;112(1):85-88.
    PMID: 39531730 DOI: 10.4269/ajtmh.24-0264
    Zoonotic malaria presents a major public health challenge in Southeast Asia. Plasmodium cynomolgi coinfects the same macaque hosts and mosquito vectors as the most common cause of zoonotic malaria, Plasmodium knowlesi. Plasmodium cynomolgi appears morphologically similar to Plasmodium vivax on microscopy and can amplify P. vivax polymerase chain reaction (PCR) assays, confounding transmission estimates. We screened 2,103 samples for P. cynomolgi across all 26 districts in Sabah, Malaysia, from 2010 to 2021. Samples comprised 1,425 P. knowlesi, 256 P. vivax, 293 P. falciparum, and 31 Plasmodium malariae PCR-confirmed malaria cases and 100 malaria microscopy-positive and species-specific PCR-negative samples. A nested PCR assay targeting P. cynomolgi-specific 18S small subunit ribosomal ribonucleic acid with a detection limit of ∼2 parasites/µL was conducted on whole blood samples. No P. cynomolgi infections were detected. Symptomatic P. cynomolgi co-infections appear rare in Malaysia, although prevalence may be underestimated owing to the absence of routine molecular screening and the sensitivity of available assays.
  12. Ab Rahman NS, Abd Majid FA, Abd Wahid ME, Zainudin AN, Zainol SN, Ismail HF, et al.
    Drug Metab Lett, 2018;12(1):62-67.
    PMID: 29542427 DOI: 10.2174/1872312812666180314112457
    BACKGROUND: SynacinnTM contains five standardized herbal extracts of Orthosiphon Stamineus (OS), Syzygium polyanthum (SZ), Curcuma xantorrizza (CX), Cinnamomum zeylanicum (CZ) and Andrographis paniculata (AP) and is standardized against phytochemical markers of rosmarinic acid, gallic acid, curcumin, catechin and andrographolide respectively. This herbal medicine has been used as health supplement for diabetes. SynacinnTM is recommended to be consumed as supplement to the diabetic drugs. However, herb-drug interaction of SynacinnTM polyherbal with present drugs is unknown.

    METHODS: This study was designed to investigate the effect of SynacinnTM and its individual biomarkers on drug metabolizing enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam), CYP3A4 (Testosteron)), to assess its herb-drug interaction potential through cytochrome P450 inhibition assay. This study was conducted using liquid chromatography- tandem mass spectroscopy (LC-MS/MS) using probe substrates using human liver microsomes against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron).

    RESULTS: Result showed that SynacinnTM at maximum concentration (5000 µg/ml) 100% inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron). IC50 values determined were 0.23, 0.60, 0.47, 0.78, 1.23, 0.99, 1.01, and 0.91 mg/ml for CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 (midazolam) and 3A4 (testosterone), respectively. Meanwhile, all individual biomarkers showed no, less or moderate inhibitory effect towards all the tested CYP450 except for curcumin that showed inhibition of CYP2C8 (91%), CYP2C9 (81%) and CYP2C19 (72%) at 10µM.

    CONCLUSION: Curcumin was found to be an active constituent that might contribute to the inhibition of SynacinnTM against CYP2C8, CYP2C9 and CYP2C19. It can be suggested that SynacinnTM can be consumed separately from a drug known to be metabolized by all tested CYP450 enzymes.

  13. Longley RJ, Grigg MJ, Schoffer K, Obadia T, Hyslop S, Piera KA, et al.
    Cell Rep Med, 2022 06 21;3(6):100662.
    PMID: 35732155 DOI: 10.1016/j.xcrm.2022.100662
    Serological markers are a promising tool for surveillance and targeted interventions for Plasmodium vivax malaria. P. vivax is closely related to the zoonotic parasite P. knowlesi, which also infects humans. P. vivax and P. knowlesi are co-endemic across much of South East Asia, making it important to design serological markers that minimize cross-reactivity in this region. To determine the degree of IgG cross-reactivity against a panel of P. vivax serological markers, we assayed samples from human patients with P. knowlesi malaria. IgG antibody reactivity is high against P. vivax proteins with high sequence identity with their P. knowlesi ortholog. IgG reactivity peaks at 7 days post-P. knowlesi infection and is short-lived, with minimal responses 1 year post-infection. We designed a panel of eight P. vivax proteins with low levels of cross-reactivity with P. knowlesi. This panel can accurately classify recent P. vivax infections while reducing misclassification of recent P. knowlesi infections.
  14. Braima KA, Piera KA, Lubis IN, Noviyanti R, Rajahram GS, Kariodimedjo P, et al.
    medRxiv, 2024 Apr 06.
    PMID: 38633782 DOI: 10.1101/2024.04.04.24305339
    BACKGROUND: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence.

    METHODS: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls.

    RESULTS: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/μL for P. knowlesi and 0.002 parasites/μL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/μL); Divis et al. real-time 18S rRNA (0.0002 parasites/μL); Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/μL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi.

    CONCLUSION: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links