Displaying publications 21 - 40 of 156 in total

Abstract:
Sort:
  1. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
  2. Sarijo SH, Hussein MZ, Yahaya AH, Zainal Z
    J Hazard Mater, 2010 Oct 15;182(1-3):563-9.
    PMID: 20633986 DOI: 10.1016/j.jhazmat.2010.06.070
    The release of chlorophenoxyherbicides agrochemicals, namely 2-chloro- (2CPA), 4-chloro and 2,4,5-trichloro (TCPA) phenoxyacetates from their nanohybrids into various aqueous solutions; carbonate, sulfate and chloride was found to be controlled by pseudo-second order rate expression. The percentage saturated released was found to be anionic-dependent, in the order of carbonate>sulfate>chloride for the release media and 2CPA>4CPA>TCPA for the anionic guests. This study demonstrates that the release of the phenoxyherbicides agrochemicals from the nanohybrid compounds can be tuned by choosing the right combination of exchangeable anions both the incoming and the outgoing anions.
  3. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ
    J Hazard Mater, 2009 Aug 30;168(1):57-63.
    PMID: 19268454 DOI: 10.1016/j.jhazmat.2009.01.130
    The photocatalytically driven removal of eco-persistent 4-chlorophenol from water using ZnO is reported here. Kinetic dependence of transformation rate on operating variables such as initial 4-chlorophenol concentration and photocatalyst doses was investigated. A complete degradation of 4-chlorophenol at 50 mg L(-1) levels was realised in 3h. Analytical profiles on 4-chlorophenol transformation were consistent with the best-line fit of the pseudo zero-order kinetics. The addition of small amounts of inorganic anions as SO(4)(2-), HPO(4)(-), S(2)O(8)(2-) and Cl(-) revealed two anion types: active site blockers and rate enhancers. Fortunately, Cl(-) and SO(4)(2-) commonly encountered in contaminated waters enhanced the rate of 4-chlorophenol degradation. The reaction intermediates and route to 4-chlorophenol mineralisation were elucidated by combined RP-HPLC and GC-MS methods. In addition to previously reported pathway products of 4-chlorophenol photo-oxidation catechol was detected. A radical mechanism involving o-hydroxylation is proposed to account for the formation of catechol.
  4. Masarudin MJ, Yusoff K, Rahim RA, Hussein MZ
    Nanotechnology, 2009 Jan 28;20(4):045602.
    PMID: 19417322 DOI: 10.1088/0957-4484/20/4/045602
    The delivery of a full plasmid, encoding the green fluorescent protein gene into African monkey kidney (Vero3) cells, was successfully achieved using nanobiocomposites based on layered double hydroxides. This demonstrated the potential of using the system as an alternative DNA delivery vector. Intercalation of the circular plasmid DNA, pEGFP-N2, into Mg/Al-NO(3)(-) layered double hydroxides (LDH) was accomplished through anion exchange routes to form the nanobiocomposite material. The host was previously synthesized at the Mg(2+) to Al(3+) molar ratio R(i) = 2 and subsequently intercalated with plasmid DNA. Size expansion of the interlamellae host from 8.8 A in LDH to 42 A was observed in the resulting nanobiocomposite, indicating stable hybridization of the plasmid DNA. The powder x-ray diffraction (PXRD) results, supplemented with Fourier-transform infrared (FTIR) spectroscopy, compositional and electrophoresis studies confirmed the encapsulation episode of the biomaterial. In order to elucidate the use of this resulting nanobiocomposite as a delivery vector, an MTT assay was performed to determine any cytotoxic effects of the host towards cells. The intercalated pEGFP-N2 anion was later successfully recovered through acidification with HNO(3) after treatment with DNA-degrading enzymes, thus also showing the ability of the LDH host to protect the intercalated biomaterial from degradation. Cell transfection studies on Vero3 cells were then performed, where cells transfected with the nanobiocomposite exhibited fluorescence as early as 12 h post-treatment compared to naked delivery of the plasmid itself.
  5. Ramimoghadam D, Hussein MZ, Taufiq-Yap YH
    Int J Mol Sci, 2012;13(10):13275-93.
    PMID: 23202952 DOI: 10.3390/ijms131013275
    ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.
  6. Hussein MZ, Kuang D, Zainal Z, Teck TK
    J Colloid Interface Sci, 2001 Mar 1;235(1):93-100.
    PMID: 11237447
    Kaolin-carbon adsorbents were prepared with and without sulfuric acid pretreatment followed by activation-carbonization at 500 degrees C. The total surface area of the resulting kaolin-carbon adsorbents was found to be decreased with the increase in kaolin loading. Sulfuric acid pretreatment of the precursor prior to the carbonization-activation processes resulted in the enhancement of total surface area but reduced the micropore surface area of the resulting adsorbents. At the same time, this improved carotene adsorption capacity from red palm oil. However, recovery of carotene from the carotene-adsorbed adsorbent is only improved when the acid pretreatment of the precursor was done at a high loading percentage of activated carbon. Similarly, the peroxide value (PV) increased. A maximum removal of carotene from red palm oil was obtained at 20% kaolin loading for both adsorbents prepared with and without sulfuric acid pretreatment with about 45 and 65% carotene removal, respectively, from a 30-ppm solution. This indicates that pretreatment with sulfuric acid, prior to the activation-carbonization process, increased the carotene uptake by the resulting adsorbent. However, a further increase in the kaolin loading resulted in the decrease of carotene removal. About 3-4% of carotene adsorbed can be recovered from both types of adsorbents under optimum condition, in which the percentage recovered decreased with the increase in kaolin loading. On the other hand, the PV increased with kaolin loading at around 54-64 mEq/kg for both types of adsorbents. It was also found that carotene uptake by the adsorbents is high if the adsorbent contains a high percentage of activated carbon. Similarly, carotene recovery is high and less oxidation can be observed, as indicated by the lower PV value. Copyright 2001 Academic Press.
  7. bin Hussein MZ, Zainal Z, Yahaya AH, Foo DW
    J Control Release, 2002 Aug 21;82(2-3):417-27.
    PMID: 12175754
    Formation of the so-called organic-inorganic nanohybrid material was exploited for the preparation of a controlled release formulation. The inorganic Zn-Al-layered double hydroxide (LDH) was used as a matrix, hosting an active agent or a guest, alpha-naphthaleneacetate (NAA), a plant growth regulator by self-assembly technique. The reverse process, i.e., the deintercalation or release of the guest, NAA was found to be rapid initially, followed by a more sustained release thereafter and this behavior was dependent on the pH of the release medium, the aqueous solution. The mechanism of release has been interpreted on the basis of the ion-exchange process between the NAA anion intercalated in the lamella host and nitrate or hydroxyl anions in the aqueous solution.
  8. bin Hussein MZ, Zainal Z, Hin TY, Tat OW
    PMID: 15040529
    Nanocomposites of Zn/Al-layered double hydroxide(anthraquinone-2,6-disulfonate) were synthesized by spontaneous direct assembly of inorganic and organic phases from aqueous solution. Powder X-ray diffraction patterns showed that a pure, single nanocomposite phase of good crystallinity was obtained using 1.0 M antraquinone-2,6-disulfonate ion (AQ26) and aging at 80 degrees C using conventional heating for 7 days or 0.5 h under microwave radiation, and these samples are denoted as ZAAN26C or ZAAN26MH, respectively. Zn/Al-nitrate-layered double hydroxide synthesized by a conventional method (ZANLC) showed a basal spacing of 8.3 A while both the nanocomposites showed 18.8 A as a result of AQ26 intercalation. FTIR study showed that the resulting nanocomposites are free from nitrate, the co-anion present in the mother liquor, indicating that only AQ26 is preferred during intercalation for the formation of the nanocomposite. The Brunauer, Emmet and Teller (BET) and micropore surface areas for ZAAN26C decreased relative to the ZANLC from 16.2 to 4.7 and 1.6 to 1.3 m2/g, respectively. These results indicate that AQ26 can be rapidly interdcalated in layered double hydroxide using microwave-aging resulting in a nanocomposite.
  9. Ebadi M, Buskaran K, Saifullah B, Fakurazi S, Hussein MZ
    Int J Mol Sci, 2019 Aug 01;20(15).
    PMID: 31374834 DOI: 10.3390/ijms20153764
    One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg-Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.
  10. Ibrahim R, Hussein MZ, Yusof NA, Abu Bakar F
    Nanomaterials (Basel), 2019 Aug 31;9(9).
    PMID: 31480466 DOI: 10.3390/nano9091239
    Carbon nanotube-quicklime nanocomposites (CQNs) have been synthesized via the chemical vapor deposition (CVD) of n-hexane using a nickel metal catalyst supported on calcined carbonate stones at temperatures of 600-900 °C. The use of a Ni/CaO(10 wt%) catalyst required temperatures of at least 700 °C to obtain XRD peaks attributable to carbon nanotubes (CNTs). The CQNs prepared using a Ni/CaO catalyst of various Ni contents showed varying diameters and the remaining catalyst metal particles could still be observed in the samples. Thermogravimetric analysis of the CQNs showed that there were two major weight losses due to the amorphous carbon decomposition (300-400 °C) and oxidation of CNTs (400-600 °C). Raman spectroscopy results showed that the CQNs with the highest graphitization were synthesized using Ni/CaO (10 wt%) at 800 °C with an IG/ID ratio of 1.30. The cyclic voltammetry (CV) of screen-printed carbon electrodes (SPCEs) modified with the CQNs showed that the performance of nanocomposite-modified SPCEs were better than bare SPCEs. When compared to carboxylated multi-walled carbon nanotubes or MWNT-COOH-modified SPCEs, the CQNs synthesized using Ni/CaO (10 wt%) at 800 °C gave higher CV peak currents and comparable electron transfer, making it a good alternative for screen-printed electrode modification.
  11. Hussein MZ, Azmin WH, Mustafa M, Yahaya AH
    J Inorg Biochem, 2009 Aug;103(8):1145-50.
    PMID: 19577306 DOI: 10.1016/j.jinorgbio.2009.05.016
    Currently the development of green chemistry approach with the use of biomaterial-based activities of microbial cells in the synthesis of various nanostructures has attracted a great attention. In this study, we report on the use of bacterium, Bacillus cereus as a biotemplating agent for the formation of zinc oxide nanoparticles with raspberry- and plate-like structures through a simple thermal decomposition of zinc acetate by maintaining the original pH of the reaction mixtures. Possible mechanism on the formation of the nanostructures is proposed based on the surface chemistry and biochemistry processes involved organic-inorganic interactions between zinc oxide and the microbial cells.
  12. Buskaran K, Hussein MZ, Mohd Moklas MA, Fakurazi S
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824281 DOI: 10.3390/ijms21165874
    The development of nanocomposites has swiftly changed the horizon of drug delivery systems in defining a new platform. Major understanding of the interaction of nanocomposites with cells and how the interaction influences intracellular uptake is an important aspect to study in order to ensure successful utilisation of the nanocomposites. Studies have suggested that the nanocomposites' ability to permeate into biological cells is attributable to their well-defined physicochemical properties with nanoscale size, which is relevant to the nanoscale components of biology and cellular organelles. The functionalized graphene oxide coated with polyethylene glycol, loaded with protocatechuic acid and folic acid (GOP-PCA-FA) nanocomposite intracellular uptake was analysed using transmission electron microscope. The accumulation of fluorescent-labelled nanocomposites in the HepG2 cell was also analysed using a fluorescent microscope. In vitro cellular uptake showed that there was uptake of the drug from 24 h into the cells and the release study using fluorescently tagged nanocomposite demonstrated that release and accumulation were observed at 24 h and 48 h. Moreover, the migration ability of tumor cells is a key step in tumor progression which was observed 48 h after treatment. The GOP serves as a potential nanocarrier system which is capable of improving the therapeutic efficacy of drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated drugs. Nonetheless, it is essential to analyse the translocation of our newly developed GOP-PCA-FA, and its efficiency for drug delivery, effective cellular uptake, and abundant intracellular accumulation would be compromised by possible untoward side effects.
  13. Hussein MZ, Hashim N, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2009 Mar;9(3):2140-7.
    PMID: 19435093
    Hybridization of beneficial organic guest with inorganic host affords scientists an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications, especially for controlled delivery of beneficial agent and storage. A new layered organic-inorganic nanohybrid material containing an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) in Zn-Al-layered double hydroxide inorganic interlayer was synthesised by direct and indirect methods. Both methods yielded mesoporous-type, phase pure, well-ordered layered nanohybrids with similar basal spacing of 28.5-28.7 angstroms and organic loading of around 54.3%. Compared to the material prepared by direct method, the ion exchanged product inherited more of the host's properties especially the pore structure and the organic moiety is also more easily released. This shows that the method of preparation plays an important role in determining the resulting physicochemical properties, in particular the release property and therefore can be used as a means to tune up the release property of the beneficial agent.
  14. Hussein MZ, Sarijo SH, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2007 Aug;7(8):2852-62.
    PMID: 17685307
    Layered organic-inorganic hybrid nanocomposite material was synthesised using 4-chlorophenoxyacetate (4CPA) as guest anion intercalated into the Zn-Al layered double hydroxide inorganic host by direct co-precipitation method at pH = 7.5 and Zn to Al molar ratio of 4. Both PXRD and FTIR results confirmed that the 4CPA was successfully intercalated into the Zn-AI-LDH interlayer. As a result, a well-ordered nanolayered organic-inorganic hybrid nanocomposite, with the expansion of the basal spacing from 8.9 angstroms in the layered double hydroxide to 20.1 angstroms in the resulting nanocomposite was observed. The FTIR spectrum of the nanocomposite (ZAC) showed that it composed spectral features of Zn-AI-LDH (ZAL) and 4CPA. The nanocomposites synthesized in this work are of mesoporous-type containing 39.8% (w/w) of 4CPA with mole fraction of Al3+ in the inorganic brucite-like layers (xAI) of 0.224. The release studies showed a rapid release of the 4CPA for the first 600 min, and more sustained thereafter. The total amount of 4CPA released from the nanocomposite interlayer into the aqueous solution were 21%, 66%, and 72% in 0.0001, 0.00025, and 0.0005 M sodium carbonate, respectively. In distilled water, about 75, 35, and 57% of 4CPA could be released in 1000 min, when the pH of the release media was set at 3, 6.25, and 12, respectively. In comparison with a structurally similar organic moiety with one more chlorine atom at the 2-position of the aromatic ring, namely 2,4-dichlorophenoxyacetate (24D), the 4CPA showed a slower release rate. The slightly bulkier organic moiety of 24D together with the presence of chlorine atom at the 2-position presumably had contributed to its higher release rate, and it seems that these factors may be exploited for tuning the release rate of intercalated guest anions with similar properties. This study suggests that layered double hydroxide can be used as a carrier for an active agent and the chemical structure of the intercalated moiety can be used to tune the desired release kinetics of the beneficial agent.
  15. Hussein MZ, Mohd Amin JB, Zainal Z, Yahaya AH
    J Nanosci Nanotechnol, 2002 Apr;2(2):143-6.
    PMID: 12908300
    Hydrotalcite-like inorganic layers of Zn-Al, a host containing an organic moiety, 2,4-dichlorophenoxy-acetate, as a guest, was prepared by the spontaneous self-assembly method from an aqueous solution for the formation of a new layered organic-inorganic hybrid nanocomposite material. In this synthesis, the host- and guest-forming species were simultaneously included in the mother liquor, aged, and separated. Various Zn/Al ratios (R = 2, 3, and 4), concentrations of 2,4-dichlorophenoxyacetic acid (0.03-0.1 M), and pH (7 and 10) were studied to optimize the formation of the layered nancomposite. It was found that the optimum conditions for the formation of the nanocomposite were R = 4, pH 7, and concentration of 2,4-dichlorophenoxyacetic acid = 0.08 M. X-ray diffraction shows that this sample affords a nanolayered structure with a basal spacing of 24.6 A.
  16. Chin LY, Zainal Z, Hussein MZ, Tee TW
    J Nanosci Nanotechnol, 2011 Jun;11(6):4900-9.
    PMID: 21770120
    The fabrication of TiO2 nanotubes (TNT) was carried out by electrochemical anodization of Ti in aqueous electrolyte containing NH4F. The effect of electrolyte pH, applied voltage, fluoride concentration and anodization duration on the formation of TNT was investigated. It was observed that self-organized TNT can be formed by adjusting the electrolyte to pH 2-4 whereby applied voltage of 10-20 V can be performed to produce highly ordered, well-organized TNT. At 20 V, TNT can be fabricated in the concentration range of 0.07 M to 0.20 M NH4F. Higher fluoride concentration leads to etching of Ti surface and reveals the Ti grain boundaries. The prepared TNT films also show an increase in depth and in size with time and the growth of TNT films reach a steady state after 120 minutes. The morphology and geometrical aspect of the TNT would be an important factor influencing the photoelectrochemical response, with higher photocurrent response is generally associated with thicker layer of TNT. Consequently, one can tailor the resulting TNT to desired surface morphologies by simply manipulating the electrochemical parameters for wide applications such as solar energy conversion and photoelectrocatalysis.
  17. Nicholas AF, Hussein MZ, Zainal Z, Khadiran T
    Sci Rep, 2020 Sep 14;10(1):15047.
    PMID: 32929140 DOI: 10.1038/s41598-020-72019-1
    The effect of the surface area of palm kernel shell activated carbon (PKSAC) on the properties of n-octadecane-encapsulated shape stabilized phase change material (SSPCM) for thermal energy storage (TES) application were studied. Various surface areas of the PKSAC were prepared using different amounts of H3PO4 treatment given to palm kernel shells from 0, 5, 10, 30 and 40% before the activation. The impregnation of n-octadecane into the different surface areas of PKSACs produced SSPCMs with different physico-chemical characteristics. The DSC analysis indicates that the higher the surface area of the PKSAC resulted in the higher freezing temperature due to the higher PCM loading that was encapsulated into the PKSAC pores. The results obtained from XRD, FESEM, Raman spectroscopy, TGA/DTG and leakage study indicate that the PKSAC is a good framework material for the development of n-octadecane-encapsulated SSPCM. It was also found that the surface area and porosity of the frameworks, activated carbon play an important role on the PCM loading percentage and their ability to be used as a thermal energy storage material.
  18. Nasir S, Hussein MZ, Yusof NA, Zainal Z
    Nanomaterials (Basel), 2017 Jul 13;7(7).
    PMID: 28703757 DOI: 10.3390/nano7070182
    Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the 'improved synthesis of graphene oxide' method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N₂) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g-1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m² g-1, respectively.
  19. Nicholas AF, Hussein MZ, Zainal Z, Khadiran T
    Nanomaterials (Basel), 2018 Sep 05;8(9).
    PMID: 30189654 DOI: 10.3390/nano8090689
    The preparation of activated carbon using palm kernel shells as the precursor (PKSAC) was successfully accomplished after the parametric optimization of the carbonization temperature, carbonization holding time, and the ratio of the activator (H₃PO₄) to the precursor. Optimization at 500 °C for 2 h of carbonization with 20% H₃PO₄ resulted in the highest surface area of the activated carbon (C20) of 1169 m² g-1 and, with an average pore size of 27 Å. Subsequently, the preparation of shape-stabilized phase change material (SSPCM-C20) was done by the encapsulation of n-octadecane into the pores of the PKSAC, C20. The field emission scanning electron microscope images and the nitrogen gas adsorption-desorption isotherms show that n-octadecane was successfully encapsulated into the pores of C20. The resulting SSPCM-C20 nano-composite shows good thermal reliability which is chemically and thermally stable and can stand up to 500 melting and freezing cycles. This research work provided a new strategy for the preparation of SSPCM material for thermal energy storage application generated from oil palm waste.
  20. Tan JM, Bullo S, Fakurazi S, Hussein MZ
    Sci Rep, 2020 10 09;10(1):16941.
    PMID: 33037287 DOI: 10.1038/s41598-020-73963-8
    This research work represents the first major step towards constructing an effective therapeutic silibinin (SB) in cancer treatment using oxidised multi-walled carbon nanotubes (MWCNT-COOH) functionalised with biocompatible polymers as the potential drug carrier. In an attempt to increase the solubility and dispersibility of SB-loaded nanotubes (MWSB), four water-soluble polymers were adopted in the preparation process, namely polysorbate 20 (T20), polysorbate 80 (T80), polyethylene glycol (PEG) and chitosan (CHI). From the geometry point of view, the hydrophobic regions of the nanotubes were loaded with water-insoluble SB while the hydrophilic polymers functionalised on the outer surfaces of the nanotubes serve as a protective shell to the external environment. The chemical interaction between MWSB nanocomposites and polymer molecules was confirmed by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Besides, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA) and UV-visible spectrophotometry were also employed to characterise the synthesised nanocomposites. The morphological study indicated that the polymers were deposited on the external surfaces of MWSB and the nanocomposites were seen to preserve their tubular structures even after the coating process was applied. The TGA results revealed that the incorporation of biopolymers practically improved the overall thermal stability of the coated MWSB nanocomposites. Evaluation of the in vitro effect on drug release rate by the nanocomposites was found to follow a biphasic release manner, showing a fast release at an initial stage and then a sustained-release over 2500 min. Besides, the drug release mechanisms of the nanocomposites demonstrated that the amount of SB released in the simulated environment was governed by pseudo-second order in which, the rate-limiting step mainly depends on diffusion of drug through chemisorption reaction. Finally, MTT assay showed that the coated MWSB nanocomposites on 3T3 cells were very much biocompatible at a concentration up to 100 g/mL, which is an evidence of MWSB reduced cytotoxicity.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links