Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Wong YY, Lee CW, Bong CW, Lim JH, Narayanan K, Sim EUH
    FEMS Microbiol Ecol, 2019 11 01;95(11).
    PMID: 31688899 DOI: 10.1093/femsec/fiz176
    We measured Vibrio spp. distribution and community profile in the tropical estuary of Port Klang and coastal water of Port Dickson, Malaysia. Vibrio spp. abundance ranged from 15 to 2395 colony forming units mL-1, and was driven by salinity and chlorophyll a (Chl a) concentration. However, the effect of salinity was pronounced only when salinity was <20 ppt. A total of 27 Vibrio spp. were identified, and theVibrio spp. community at Port Dickson was more diverse (H' = 1.94 ± 0.21). However species composition between Port Dickson and Port Klang were similar. Two frequently occurring Vibrio spp. were V. owensii and V. rotiferianus, which exhibited relatively higher growth rates (ANCOVA: F > 4.338, P < 0.05). Co-culture experiments between fast- and slow-growing Vibrio spp. revealed that fast-growing Vibrio spp. (r-strategists) were overwhelmed by slower-growing Vibrio spp. (K-strategists) when nutrient conditions were set towards oligotrophy. In response to resource availability, the intrinsic growth strategy of each Vibrio spp. determined its occurrence and the development of Vibrio spp. community composition.
  2. Lee CW, Lim JH, Heng PL, Marican NF, Narayanan K, Sim EUH, et al.
    Environ Monit Assess, 2020 Sep 25;192(10):660.
    PMID: 32975666 DOI: 10.1007/s10661-020-08625-3
    We sampled the Klang estuary during the inter-monsoon and northeast monsoon period (July-Nov 2011, Oct-Nov 2012), which coincided with higher rainfall and elevated Klang River flow. The increased freshwater inflow into the estuary resulted in water column stratification that was observed during both sampling periods. Dissolved oxygen (DO) dropped below 63 μM, and hypoxia was observed. Elevated river flow also transported dissolved inorganic nutrients, chlorophyll a and bacteria to the estuary. However, bacterial production did not correlate with DO concentration in this study. As hypoxia was probably not due to in situ heterotrophic processes, deoxygenated waters were probably from upstream. We surmised this as DO correlated with salinity (R2 = 0.664, df = 86, p  6.7 h), hypoxia could occur at the Klang estuary. Here, we presented a model that related riverine flow rate to the post-heavy rainfall hypoxia that explicated the episodic hypoxia at Klang estuary. As Klang estuary supports aquaculture and cockle culture, our results could help protect the aquaculture and cockle culture industry here.
  3. Lee CW, Ng AY, Bong CW, Narayanan K, Sim EU, Ng CC
    Water Res, 2011 Feb;45(4):1561-70.
    PMID: 21146847 DOI: 10.1016/j.watres.2010.11.025
    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella.
  4. Sim EU, Chan SL, Ng KL, Lee CW, Narayanan K
    Dis Markers, 2016;2016:5179594.
    PMID: 28018022 DOI: 10.1155/2016/5179594
    Apart from their canonical role in ribosome biogenesis, there is increasing evidence of ribosomal protein genes' involvement in various cancers. A previous study by us revealed significant differential expression of three ribosomal protein genes (RPeL27, RPeL41, and RPeL43) between cell lines derived from tumor and normal nasopharyngeal epithelium. However, the results therein were based on a semiquantitative assay, thus preliminary in nature. Herein, we provide findings of a deeper analysis of these three genes in the context to nasopharyngeal carcinoma (NPC) tumorigenesis. Their expression patterns were analyzed in a more quantitative manner at transcript level. Their protein expression levels were also investigated. We showed results that are contrary to previous report. Rather than downregulation, these genes were significantly overexpressed in NPC cell lines compared to normal control at both transcript and protein levels. Nevertheless, their association with NPC has been established. Immunoprecipitation pulldown assays indicate the plausible interaction of either RPeL27 or RPeL43 with POTEE/TUBA1A and ACTB/ACTBL2 complexes. In addition, RPeL43 is shown to bind with MRAS and EIF2S1 proteins in a NPC cell line (HK1). Our findings support RPeL27, RPeL41, and RPeL43 as potential markers of NPC and provide insights into the interaction targets of RPeL27 and RPeL43 proteins.
  5. Lim JH, Lee CW, Bong CW, Affendi YA, Hii YS, Kudo I
    Mar Pollut Bull, 2018 Mar;128:415-427.
    PMID: 29571392 DOI: 10.1016/j.marpolbul.2018.01.037
    Particulate phosphorus was the dominant phosphorus species and accounted for 72 ± 5% of total phosphorus in coastal habitats, 63 ± 4% in estuaries, 58 ± 6% in lakes and 80 ± 7% in aquaculture farms whereas dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) were minor components. Correlation analyses (DIP vs Chl a; R2 = 0.407, df = 31, p 
  6. Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, et al.
    Sci Total Environ, 2019 Oct 20;688:1335-1347.
    PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304
    The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
  7. Yanshree, Yu WS, Fung ML, Lee CW, Lim LW, Wong KH
    Cells, 2022 Jul 24;11(15).
    PMID: 35892581 DOI: 10.3390/cells11152284
    Alzheimer's disease (AD) is a neurodegenerative disorder, and no effective treatments are available to treat this disorder. Therefore, researchers have been investigating Hericium erinaceus, or the monkey head mushroom, an edible medicinal mushroom, as a possible treatment for AD. In this narrative review, we evaluated six preclinical and three clinical studies of the therapeutic effects of Hericium erinaceus on AD. Preclinical trials have successfully demonstrated that extracts and bioactive compounds of Hericium erinaceus have potential beneficial effects in ameliorating cognitive functioning and behavioral deficits in animal models of AD. A limited number of clinical studies have been conducted and several clinical trials are ongoing, which have thus far shown analogous outcomes to the preclinical studies. Nonetheless, future research on Hericium erinaceus needs to focus on elucidating the specific neuroprotective mechanisms and the target sites in AD. Additionally, standardized treatment parameters and universal regulatory systems need to be established to further ensure treatment safety and efficacy. In conclusion, Hericium erinaceus has therapeutic potential and may facilitate memory enhancement in patients with AD.
  8. Akinsola RO, Adewoyin M, Lee CW, Sim EU, Narayanan K
    Anal Biochem, 2021 12 01;634:114432.
    PMID: 34695391 DOI: 10.1016/j.ab.2021.114432
    Quantification of bacterial invasion into eukaryotic cells is a prerequisite to unfold the molecular mechanisms of this vector's function to obtain insights for improving its efficiency. Invasion is traditionally quantified by antibiotic protection assays that require dilution plating and counting of colony-forming units rescued from infected cells. However, to differentiate between attached and internalized bacteria vector, this assay requires supplementation by a time-consuming and tedious immunofluorescence staining, making it laborious and reduces its reliability and reproducibility. Here we describe a new red fluorescent protein (RFP)-based high-throughput and inexpensive method for tracking bacterial adherence and internalization through flow cytometry to provide a convenient and real-time quantification of bacterial invasiveness in a heterogeneous population of cells. We invaded MCF-7, A549, and HEK-293 cells with the E. coli vector and measured RFP using imaging flow cytometry. We found high cellular infection of up to 70.47% in MCF-7 compared to 27.4% and 26.2% in A549 and HEK-293 cells, respectively. The quantitative evaluation of internalized E. coli is rapid and cell-dependent, and it distinctively differentiates between attached and cytosolic bacteria while showing the degree of cellular invasiveness. This imaging flow cytometry approach can be applied broadly to study host-bacteria interaction.
  9. Osahor A, Deekonda K, Lee CW, Sim EU, Radu A, Narayanan K
    Anal Biochem, 2017 10 01;534:46-48.
    PMID: 28693990 DOI: 10.1016/j.ab.2017.07.008
    Sample preparation for scanning electron microscope analysis involves reagents and equipment that are expensive and often hazardous. Here we demonstrate a circumvention of Osmium tetroxide and critical point drying, greatly reducing the duration, complexity and cost of the process. We captured early stage interactions of invasive-bacteria and HeLa cells during the process of bacteria-mediated gene delivery and illustrate sufficient clarity can be obtained using this procedure to preserve and clearly visualize relevant cellular structures. This protocol is significantly cheaper and easier to adapt compared to conventional methods, and will allow routine preparation/viewing of eukaryotic or bacterial samples for basic morphological studies.
  10. Khan MJ, Singh PP, Pradhan B, Alamri A, Lee CW
    Sensors (Basel), 2023 Oct 28;23(21).
    PMID: 37960482 DOI: 10.3390/s23218783
    Road network extraction is a significant challenge in remote sensing (RS). Automated techniques for interpreting RS imagery offer a cost-effective solution for obtaining road network data quickly, surpassing traditional visual interpretation methods. However, the diverse characteristics of road networks, such as varying lengths, widths, materials, and geometries across different regions, pose a formidable obstacle for road extraction from RS imagery. The issue of road extraction can be defined as a task that involves capturing contextual and complex elements while also preserving boundary information and producing high-resolution road segmentation maps for RS data. The objective of the proposed Archimedes tuning process quantum dilated convolutional neural network for road Extraction (ATP-QDCNNRE) technology is to tackle the aforementioned issues by enhancing the efficacy of image segmentation outcomes that exploit remote sensing imagery, coupled with Archimedes optimization algorithm methods (AOA). The findings of this study demonstrate the enhanced road-extraction capabilities achieved by the ATP-QDCNNRE method when used with remote sensing imagery. The ATP-QDCNNRE method employs DL and a hyperparameter tuning process to generate high-resolution road segmentation maps. The basis of this approach lies in the QDCNN model, which incorporates quantum computing (QC) concepts and dilated convolutions to enhance the network's ability to capture both local and global contextual information. Dilated convolutions also enhance the receptive field while maintaining spatial resolution, allowing fine road features to be extracted. ATP-based hyperparameter modifications improve QDCNNRE road extraction. To evaluate the effectiveness of the ATP-QDCNNRE system, benchmark databases are used to assess its simulation results. The experimental results show that ATP-QDCNNRE performed with an intersection over union (IoU) of 75.28%, mean intersection over union (MIoU) of 95.19%, F1 of 90.85%, precision of 87.54%, and recall of 94.41% in the Massachusetts road dataset. These findings demonstrate the superior efficiency of this technique compared to more recent methods.
  11. Wong YC, Ng AWR, Chen Q, Liew PS, Lee CW, Sim EUH, et al.
    ACS Synth Biol, 2023 Apr 21;12(4):909-921.
    PMID: 37026178 DOI: 10.1021/acssynbio.2c00580
    Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.
  12. Herr DR, Reolo MJ, Peh YX, Wang W, Lee CW, Rivera R, et al.
    Sci Rep, 2016 Apr 15;6:24541.
    PMID: 27080739 DOI: 10.1038/srep24541
    Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2(-/-) knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
  13. Liew PS, Chen Q, Ng AWR, Chew YC, Ravin NV, Sim EUH, et al.
    Anal Biochem, 2019 10 15;583:113361.
    PMID: 31306622 DOI: 10.1016/j.ab.2019.113361
    Phage N15 protelomerase (TelN) cleaves double-stranded circular DNA containing a telomerase-occupancy-site (tos) and rejoins the resulting linear-ends to form closed-hairpin-telomeres in Escherichia coli (E. coli). Continued TelN expression is essential to support resolution of the linear structure. In mammalian cells, no enzyme with TelN-like activities has been found. In this work, we show that phage TelN, expressed transiently and stably in human and mouse cells, recapitulates its native activities in these exogenous environments. We found TelN to accurately resolve tos-DNA in vitro and in vivo within human and mouse cells into linear DNA-containing terminal telomeres that are resistant to RecBCD degradation, a hallmark of protelomerase processing. In stable cells, TelN activity was detectable for at least 60 days, which suggests the possibility of limited silencing of its expression. Correspondingly, linear plasmid containing a 100 kb human β-globin gene expressed for at least 120 h in non-β-globin-expressing mouse cells with TelN presence. Our results demonstrate TelN is able to cut and heal DNA as hairpin-telomeres within mammalian cells, providing a tool for creating novel structures by DNA resolution in these hosts. The TelN protelomerase may be useful for exploring novel technologies for genome interrogation and chromosome engineering.
  14. Santos HM, Tsai CY, Maquiling KRA, Tayo LL, Mariatulqabtiah AR, Lee CW, et al.
    Aquac Int, 2020;28(1):169-185.
    PMID: 32834683 DOI: 10.1007/s10499-019-00451-w
    Acute hepatopancreatic necrosis disease (AHPND) or formerly known as early mortality syndrome (EMS) is an emerging disease that has caused significant economic losses to the aquaculture industry. The primary causative agent of AHPND is Vibrio parahaemolyticus, a Gram-negative rod-shaped bacterium that has gained plasmids encoding the fatal binary toxins Pir A/Pir B that cause rapid death of the infected shrimp. In this review, the current research studies and information about AHPND in shrimps have been presented. Molecular diagnostic tools and potential treatments regarding AHPND were also included. This review also includes relevant findings which may serve as guidelines that can help for further investigation and studies on AHPND or other shrimp diseases.
  15. Wong YY, Lee CW, Chai SCY, Lim JH, Bong CW, Sim EUH, et al.
    Mar Pollut Bull, 2022 Dec;185(Pt A):114297.
    PMID: 36327936 DOI: 10.1016/j.marpolbul.2022.114297
    We investigated the appropriateness of faecal indicator bacteria in tropical waters. We compared total coliform (undetectable to 7.2 × 105 cfu 100 mL-1), faecal coliform (undetectable to 6.1 × 105 cfu 100 mL-1) and enterococci (undetectable to 3.1 × 104 cfu 100 mL-1) distribution in Peninsular Malaysia. Faecal indicator bacteria was highest in freshwater, and lowest in seawater (q > 4.18, p 
  16. Vaezzadeh V, Yi X, Rais FR, Bong CW, Thomes MW, Lee CW, et al.
    Mar Pollut Bull, 2021 Nov;172:112871.
    PMID: 34428623 DOI: 10.1016/j.marpolbul.2021.112871
    Concentrations, sources and interactions between black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were investigated in 42 sediment samples collected from riverine, coastal and shelf areas in Peninsular Malaysia. The concentrations of BC measured by benzene polycarboxylic acid (BPCA) method and PAHs showed broad spatial variations between the relatively pristine environment of the East coast and developed environment of the West and South coast ranging from 0.02 to 0.36% dw and 57.7 ng g-1 dw to 19,300 ng g-1 dw, respectively. Among diagnostic ratios of PAHs, the ratios of Ant/(Ant+Phe) and LMW/HMW drew the clearest distinctions between the East coast versus the West and South coast sediments indicating the predominance of petrogenic sources in the former versus pyrogenic sources in the latter. PAHs significantly correlated with BC and total organic carbon (TOC) in the sediments (p 
  17. Tay ZH, Ng FL, Thong CH, Lee CW, Gnana Kumar G, Al-Sehemi AG, et al.
    Appl Microbiol Biotechnol, 2024 Dec;108(1):1-14.
    PMID: 38194143 DOI: 10.1007/s00253-023-12951-0
    In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p 
  18. Tee JY, Ng FL, Keng FS, Lee CW, Zhang B, Lin S, et al.
    iScience, 2024 Apr 19;27(4):109564.
    PMID: 38617563 DOI: 10.1016/j.isci.2024.109564
    The successful commercialization of algal biophotovoltaics (BPV) technology hinges upon a multifaceted approach, encompassing factors such as the development of a cost-efficient and highly conductive anode material. To address this issue, we developed an environmentally benign method of producing reduced graphene oxide (rGO), using concentrated Chlorella sp. UMACC 313 suspensions as the reducing agent. The produced rGO was subsequently coated on the carbon paper (rGO-CP) and used as the BPV device's anode. As a result, maximum power density was increased by 950% for Chlorella sp. UMACC 258 (0.210 mW m-2) and 781% for Synechococcus sp. UMACC 371 (0.555 mW m-2) compared to bare CP. The improved microalgae adhesion to the anode and improved electrical conductivity of rGO brought on by the effective removal of oxygen functional groups may be the causes of this. This study has demonstrated how microalgal-reduced GO may improve the efficiency of algal BPV for producing bioelectricity.
  19. Hung SK, Kou HW, Hsu KH, Wu CT, Lee CW, Leonard Goh ZN, et al.
    J Formos Med Assoc, 2021 Mar;120(3):997-1004.
    PMID: 32917483 DOI: 10.1016/j.jfma.2020.08.039
    BACKGROUND/PURPOSE: Splenic abscess is a life-threatening surgical emergency which requires early diagnosis and intervention to maximize patient outcomes. This can be achieved through accurate risk stratification in the emergency department (ED). Sarcopenia refers to an age-related loss of skeletal muscle mass and strength that is accompanied by major physiologic and clinical ramifications, and often signifies decreased physiologic reserves. It is associated with poor clinical outcomes in sepsis, acute respiratory failure, oncological surgery, and liver transplantation. This study evaluates the utility of sarcopenia as a radiological stratification tool to predict in-hospital mortality of splenic abscess patients in the ED. This will assist emergency physicians, internists and surgeons in rapid risk stratification, assessing treatment options, and communicating with family members.

    METHODS: 99 adult patients at four training and research hospitals who had undergone an abdominal contrast computed tomography scan in the ED with the final diagnosis of splenic abscess from January 2004 to November 2017 were recruited. Evaluation for sarcopenia was performed via calculating the psoas cross-sectional area at the level of the third lumbar vertebra and normalising for height, before checking it against pre-defined values. Univariate analyses were used to evaluate the differences between survivors and non-survivors. Sensitivity, specificity, and predictive values of the presence of sarcopenia in predicting in-hospital mortality were calculated. Kaplan-Meier methods, log-rank test, and Cox proportional hazards model were also performed to examine survival between groups with sarcopenia versus non-sarcopenia.

    RESULTS: Splenic abscess patients with sarcopenia were 7.56 times more at risk of in-hospital mortality than those without sarcopenia (multivariate-adjusted HR: 7.56; 95% CI: 1.55-36.93). Presence of sarcopenia was found to have 84.62% sensitivity and 96.49% negative predictive value in predicting mortality.

    CONCLUSION: Sarcopenia is associated with poor prognoses of in-hospital mortality in patients with splenic abscess presenting to the ED. We recommend its use in the ED to rapidly risk stratify and predict outcome to guide treatment strategies.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links