Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Ng KL, Huan NC, Mohammad FA, Mohd Aminudin NH, Mohammad FA, Abdul Rahaman JA
    Med J Malaysia, 2022 Jan;77(1):33-40.
    PMID: 35086992
    BACKGROUND: Bronchial provocation test (BPT) is widely used internationally not only to evaluate bronchial responsiveness in conditions especially asthma, but is also utilized as a marker of control, severity and prognosis for asthma. However, the uptake of BPT in certain countries including Malaysia remains low. We aimed to explore this lack of knowledge by assessing the current level of awareness and knowledge on BPT amongst doctors in Malaysia.

    MATERIALS AND METHODS: A nationwide web-based questionnaire targeting doctors was sent through social media (Facebook, WhatsApp and Telegram) and Malaysian Medical Association (MMA) mailing lists between 1 October 2020 - 5 February 2021.

    RESULTS: In all 415 survey responses were analysed from doctors of various grades namely medical officers to consultants. A total of 404 (97.35%) encountered patients with asthma in their daily practice. According to specialty: 169 (40.72%) were from primary care, 121 (29.16%) internal medicine, 50 (12.05%) pulmonary medicine and 75 (18.07%) others. Only 163 (39.28%) were aware of BPT as a tool to diagnose asthma. 232 (55.90%) and 124 (29.88%) regarded BPT as an important test and felt confident to refer patients for BPT respectively. Of those participants who were not confident to refer: 35.17% were unsure of BPT indications, 33.21% were unsure of centres providing BPT, 8.17% cited logistic reasons, 6.04% were concerned of possible BPT side effects. 387 (93.25%) wanted more training in BPT. The median BPT knowledge score was 20% (1 out of 5). Awareness and knowledge were affected by specialty but not by: region of practice, gender, age and grade from logistic regression analysis.

    CONCLUSION: Various national level programs and targeted local interventions are much needed to increase the awareness, knowledge and uptake of BPT in Malaysia.

  2. Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, et al.
    Int J Biol Macromol, 2018 Jun;112:754-760.
    PMID: 29428390 DOI: 10.1016/j.ijbiomac.2018.02.035
    In the present study, iminodiacetic acid (IDA)-modified kenaf fiber, K-IDA formed by the chemical modification of plant kenaf biomass was tested for its efficacy as a sorbent material towards the purification of waste water. The K-IDA fiber was first characterized by the instrumental techniques like Fourier transform infrared (FTIR) analysis, elemental analysis (CHNSO), and scanning electron microscopy (SEM). On testing for the biosorption, we found that the K-IDA has an increment in the adsorption of Cu2+ ions as compared against the untreated fiber. The Cu2+ ions adsorption onto K-IDA fits very well with the Langmuir model and the adsorption maximum achieved to be 91.74mg/g. Further, the adsorption kinetics observed to be pseudo second-order kinetics model and the Cu2+ ions adsorption is a spontaneous endothermic process. The desorption study indicates a highest percentage of Cu2+ of 97.59% from K-IDA under 1M HCl solution against H2SO4 (72.59%) and HNO3 (68.66%). The reusability study indicates that the efficiency did not change much until the 4th cycle and also providing enough evidence for the engagement of our biodegradable K-IDA fiber towards the removal of Cu2+ ions in real-time waste water samples obtained from the electroplating and wood treatment industries.
  3. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, et al.
    Int J Nanomedicine, 2016;11:413-28.
    PMID: 26858524 DOI: 10.2147/IJN.S90198
    In this study, we synthesized a multifunctional nanoparticulate system with specific targeting, imaging, and drug delivering functionalities by following a three-step protocol that operates at room temperature and solely in aqueous media. The synthesis involves the encapsulation of luminescent Mn:ZnS quantum dots (QDs) with chitosan not only as a stabilizer in biological environment, but also to further provide active binding sites for the conjugation of other biomolecules. Folic acid was incorporated as targeting agent for the specific targeting of the nanocarrier toward the cells overexpressing folate receptors. Thus, the formed composite emits orange-red fluorescence around 600 nm and investigated to the highest intensity at Mn(2+) doping concentration of 15 at.% and relatively more stable at low acidic and low alkaline pH levels. The structural characteristics and optical properties were thoroughly analyzed by using Fourier transform infrared, X-ray diffraction, dynamic light scattering, ultraviolet-visible, and fluorescence spectroscopy. Further characterization was conducted using thermogravimetric analysis, high-resolution transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy. The cell viability and proliferation studies by means of MTT assay have demonstrated that the as-synthesized composites do not exhibit any toxicity toward the human breast cell line MCF-10 (noncancer) and the breast cancer cell lines (MCF-7 and MDA-MB-231) up to a 500 µg/mL concentration. The cellular uptake of the nanocomposites was assayed by confocal laser scanning microscope by taking advantage of the conjugated Mn:ZnS QDs as fluorescence makers. The result showed that the functionalization of the chitosan-encapsulated QDs with folic acid enhanced the internalization and binding affinity of the nanocarrier toward folate receptor-overexpressed cells. Therefore, we hypothesized that due to the nontoxic nature of the composite, the as-synthesized nanoparticulate system can be used as a promising candidate for theranostic applications, especially for a simultaneous targeted drug delivery and cellular imaging.
  4. Alhaj AK, Burhamah T, Mohammad F, Almutawa M, Dashti F, Almurshed M, et al.
    World Neurosurg, 2024 Apr 16.
    PMID: 38636638 DOI: 10.1016/j.wneu.2024.04.057
    BACKGROUND: Medulloblastomas are the most common malignant brain tumors in the pediatric population. Based on the idea that tumors with identical radio-genomic features should behave similarly, the four molecular subtypes are now widely accepted as a guide for the management and prognosis. The radiological features of medulloblastomas can predict the molecular subtype; thus, anticipating the subsequent disease progression. However, this has not been evaluated comprehensively.

    PURPOSE: We aim to thoroughly study the association between the molecular subtypes and radiological features of medulloblastomas. Moreover, we aim to investigate the efficacy of this correlation with the use of progression-free survival (PFS) and five-year survival rates.

    METHODS: A retrospective analysis was conducted for all histopathological confirmed medulloblastomas in pediatric patients (<16 years old) that were operated on in Kuwait over the past ten years (n=44). The radiological, histological, and molecular characteristics were justifiably evaluated and analyzed in our sample.

    RESULTS: The overall progression-free survival after one year was noticed among 27 cases (≈44%) and the non-specific five-year survival was seen in 31 cases (≈70%) after a five-year follow-up. SHH and WNT had the best outcomes, while group 3 showed the worst outcomes.

    CONCLUSION: Our findings did not support the association between most of the typical MRI characteristics and survival rate. We further established that SHH and WNT biological types have a better prognosis. There was no association observed between the radiographic features, specifically the location, and the molecular subtype.

  5. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al Abbosh KF, et al.
    Biomed Res Int, 2019;2019:7064073.
    PMID: 30868072 DOI: 10.1155/2019/7064073
    The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA. The analysis of results provided the information that the extraction efficiency is a strong dependent of polymer amount and binding buffer type. Among the three types of buffers tested, the GuHCl buffer produced the most satisfactory results in terms of yield and efficiency of extraction. Moreover, the absorbance ratio of A260/A280 in all of the samples varied from 1.682 to 1.491, thereby confirming the capability of poly(4,4'-cyclohexylidene bisphenol oxalate) to elute pure DNA. The results demonstrated an increased DNA binding capacity with respect to increased percentage of the polymer. The study has concluded that poly(bisphenol Z oxalate) can be applied as one of the potential candidates for the high efficiency extraction of DNA by means of a simple, cost-effective, and environmentally friendly approach compared to the other traditional solid-phase methods.
  6. Abd Rahman S, Ariffin N, Yusof NA, Abdullah J, Mohammad F, Ahmad Zubir Z, et al.
    Sensors (Basel), 2017 Jul 01;17(7).
    PMID: 28671559 DOI: 10.3390/s17071537
    A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.
  7. Manan FAA, Yusof NA, Abdullah J, Mohammad F, Nurdin A, Yazan LS, et al.
    Pharmaceutics, 2021 Aug 31;13(9).
    PMID: 34575455 DOI: 10.3390/pharmaceutics13091379
    Nanotechnology-based drug delivery systems are an emerging technology for the targeted delivery of chemotherapeutic agents in cancer therapy with low/no toxicity to the non-cancer cells. With that view, the present work reports the synthesis, characterization, and testing of Mn:ZnS quantum dots (QDs) conjugated chitosan (CS)-based nanocarrier system encapsulated with Mitomycin C (MMC) drug. This fabricated nanocarrier, MMC@CS-Mn:ZnS, has been tested thoroughly for the drug loading capacity, drug encapsulation efficiency, and release properties at a fixed wavelength (358 nm) using a UV-Vis spectrophotometer. Followed by the physicochemical characterization, the cumulative drug release profiling data of MMC@CS-Mn:ZnS nanocarrier (at pH of 6.5, 6.8, 7.2, and 7.5) were investigated to have the highest release of 56.48% at pH 6.8, followed by 50.22%, 30.88%, and 10.75% at pH 7.2, 6.5, and 7.5, respectively. Additionally, the drug release studies were fitted to five different pharmacokinetic models including pesudo-first-order, pseudo-second-order, Higuchi, Hixson-Crowell, and Korsmeyers-Peppas models. From the analysis, the cumulative MMC release suits the Higuchi model well, revealing the diffusion-controlled mechanism involving the correlation of cumulative drug release proportional to the function square root of time at equilibrium, with the correlation coefficient values (R2) of 0.9849, 0.9604, 0.9783, and 0.7989 for drug release at pH 6.5, 6.8, 7.2, and 7.5, respectively. Based on the overall results analysis, the formulated nanocarrier system of MMC synergistically envisages the efficient delivery of chemotherapeutic agents to the target cancerous sites, able to sustain it for a longer time, etc. Consequently, the developed nanocarrier system has the capacity to improve the drug loading efficacy in combating the reoccurrence and progression of cancer in non-muscle invasive bladder diseases.
  8. Taleb S, Vahedian-Azimi A, Karimi L, Salim S, Mohammad F, Samhadaneh D, et al.
    BMC Psychiatry, 2024 Jan 22;24(1):61.
    PMID: 38254016 DOI: 10.1186/s12888-023-05088-x
    BACKGROUND: In light of several recent studies, there is evidence that the coronavirus disease 2019 (COVID-19) pandemic has caused various mental health concerns in the general population, as well as among healthcare workers (HCWs). The main aim of this study was to assess the psychological distress, burnout and structural empowerment status of HCWs during the COVID-19 outbreak, and to evaluate its predictors.

    METHODS: This multi-center, cross-sectional web-based questionnaire survey was conducted on HCWs during the outbreak of COVID-19 from August 2020 to January 2021. HCWs working in hospitals from 48 different countries were invited to participate in an online anonymous survey that investigated sociodemographic data, psychological distress, burnout and structural empowerment (SE) based on Depression Anxiety and Stress Scale 21 (DASS-21), Maslach Burnout Inventory (MBI) and Conditions for work effectiveness questionnaire (CWEQ_II), respectively. Predictors of the total scores of DASS-21, MBI and CWEQ-II were assessed using unadjusted and adjusted binary logistic regression analysis.

    RESULTS: Out of the 1030 HCWs enrolled in this survey, all completed the sociodemographic section (response rate 100%) A total of 730 (70.9%) HCWs completed the DASS-21 questionnaire, 852 (82.6%) completed the MBI questionnaire, and 712 (69.1%) completed the CWEQ-II questionnaire. The results indicate that 360 out of 730 responders (49.3%) reported severe or extremely severe levels of stress, anxiety, and depression. Additionally, 422 out of 851 responders (49.6%) reported a high level of burnout, while 268 out of 712 responders (37.6%) reported a high level of structural empowerment based on the DASS-21, MBI, and CWEQ-II scales, respectively. In addition, the analysis showed that HCWs working in the COVID-19 areas experienced significantly higher symptoms of severe stress, anxiety, depression and higher levels of burnout compared to those working in other areas. The results also revealed that direct work with COVID-19 patients, lower work experience, and high workload during the outbreak of COVID-19 increase the risks of negative psychological consequences.

    CONCLUSION: Health professionals had high levels of burnout and psychological symptoms during the COVID-19 emergency. Monitoring and timely treatment of these conditions is needed.

  9. Ashhar Z, Yusof NA, Ahmad Saad FF, Mohd Nor SM, Mohammad F, Bahrin Wan Kamal WH, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526838 DOI: 10.3390/molecules25112668
    Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.
  10. Azmi UZM, Yusof NA, Abdullah J, Mohammad F, Ahmad SAA, Suraiya S, et al.
    Nanomaterials (Basel), 2021 Sep 20;11(9).
    PMID: 34578762 DOI: 10.3390/nano11092446
    A portable electrochemical aptamer-antibody based sandwich biosensor has been designed and successfully developed using an aptamer bioreceptor immobilized onto a screen-printed electrode surface for Mycobacterium tuberculosis (M. tuberculosis) detection in clinical sputum samples. In the sensing strategy, a CFP10-ESAT6 binding aptamer was immobilized onto a graphene/polyaniline (GP/PANI)-modified gold working electrode by covalent binding via glutaraldehyde linkage. Upon interaction with the CFP10-ESAT6 antigen target, the aptamer will capture the target where the nano-labelled Fe3O4/Au MNPs conjugated antibody is used to complete the sandwich format and enhance the signal produced from the aptamer-antigen interaction. Using this strategy, the detection of CFP10-ESAT6 antigen was conducted in the concentration range of 5 to 500 ng/mL. From the analysis, the detection limit was found to be 1.5 ng/mL, thereby demonstrating the efficiency of the aptamer as a bioreceptor. The specificity study was carried out using bovine serum albumin (BSA), MPT64, and human serum, and the result demonstrated good specificity that is 7% higher than the antibody-antigen interaction reported in a previous study. The fabricated aptasensor for M. tuberculosis analysis shows good reproducibility with an relative standard deviation (RSD) of 2.5%. Further analysis of M. tuberculosis in sputum samples have shown good correlation with the culture method with 100% specificity and sensitivity, thus making the aptasensor a promising candidate for M. tuberculosis detection considering its high specificity and sensitivity with clinical samples.
  11. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, et al.
    J Colloid Interface Sci, 2016 Oct 15;480:146-58.
    PMID: 27428851 DOI: 10.1016/j.jcis.2016.07.011
    In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast cancer cells in vivo, providing a blueprint for improving the 5-FU efficacy and tumor targeting specificity with limited systemic toxicity.
  12. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
  13. Birma Bwatanglang I, Mohammad F, Yusof NA, Elyani Mohammed N, Abu N, Alitheen NB, et al.
    J Mater Sci Mater Med, 2017 Aug 08;28(9):138.
    PMID: 28791524 DOI: 10.1007/s10856-017-5949-9
    5-Fluororaucil (5-FU) as anti-cancer drug was reported to induce thymidine synthase (TS) overexpression and cancer cell resistance. To improve its therapeutic efficacy and selective targeting, here we developed a targeted delivery system mediated by the active ligand-folate receptor chemistry to deliver the 5-FU drug selectively into the tumor microenvironment. The preparation was achieved by exploring chitosan (CS)-biopolymer based system with folic acid (FA)-conjugation. The 5-FU@FACS-Mn:ZnS quantum dots (QDs) based on the histological assessment conducted in the 4T1 challenged mice showed an improved tumor remission in the liver, spleen and lungs. The 5-FU@FACS-Mn:ZnS composite induced anti-proliferative properties in these organs as compared to the free 5-FU drug. Unlike the 5-FU@FACS-Mn:ZnS treated groups which showed some specific morphological changes such as cell shrinkage without obvious presence of adipocytes, the excised section of the tumor in the untreated control group and the free 5-FU drug treated group showed necrotic and degenerated cells; these cells are multifocally distributed in the tumor mass with evidence of widely distributed adipocytes within the tumor mass. These findings suggest that the 5-FU@FACS-Mn:ZnS composite has a superior role during the induction of apoptosis in the 4T1 cells as compared to the free 5-FU drug treated groups. The results of the study therefore suggest that the impregnation of 5-FU anti-cancer drug within the FACS-Mn:ZnS system significantly improves its selective targeting efficacy, in addition to improving the anti-proliferative properties and attenuate possible tumor resistances to the 5-FU drug. The work discusses about the anti-metastatic effects of folic acid-bound 5-Fluororacil loaded Mn:ZnS quantum dots towards 4T1 cell line proliferation in mice based on the histological analysis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links