Displaying publications 21 - 40 of 81 in total

Abstract:
Sort:
  1. Ng MH, Choo YM, Ma AN, Chuah CH, Hashim MA
    Lipids, 2004 Oct;39(10):1031-5.
    PMID: 15691027
    Previous reports showed that vitamin E in palm oil consists of various isomers of tocopherols and tocotrienols [alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol), and this is normally analyzed using silica column HPLC with fluorescence detection. In this study, an HPLC-fluorescence method using a C30 silica stationary phase was developed to separate and analyze the vitamin E isomers present in palm oil. In addition, an alpha-tocomonoenol (alpha-T1) isomer was quantified and characterized by MS and NMR. (alpha-T1 constitutes about 3-4% (40+/-5 ppm) of vitamin E in crude palm oil (CPO) and is found in the phytonutrient concentrate (350+/-10 ppm) from palm oil, whereas its concentration in palm fiber oil (PFO) is about 11% (430+/-6 ppm). The relative content of each individual vitamin E isomer before and after interesterification/transesterification of CPO to CPO methyl esters, followed by vacuum distillation of CPO methyl esters to yield the residue, remained the same except for alpha-T and gamma-T3. Whereas alpha-T constitutes about 36% of the total vitamin E in CPO, it is present at a level of 10% in the phytonutrient concentrate. On the other hand, the composition of gamma-T3 increases from 31% in CPO to 60% in the phytonutrient concentrate. Vitamin is present at 1160+/-43 ppm, and its concentrations in PFO and the phytonutrient concentrate are 4,040+/-41 and 13,780+/-65 ppm, respectively. The separation and quantification of alpha-T1 in palm oil will lead to more in-depth knowledge of the occurrence of vitamin E in palm oil.
  2. Tan CW, Ng MH, Ohnmar H, Lokanathan Y, Nur-Hidayah H, Roohi SA, et al.
    Indian J Orthop, 2013 Nov;47(6):547-52.
    PMID: 24379458 DOI: 10.4103/0019-5413.121572
    BACKGROUND AND AIM: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect.

    MATERIALS AND METHODS: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study.

    RESULTS: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix.

    CONCLUSION: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model.

  3. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, et al.
    PLoS One, 2015;10(6):e0128973.
    PMID: 26107378 DOI: 10.1371/journal.pone.0128973
    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.
  4. Koh AE, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Jul;196:111514.
    PMID: 31154277 DOI: 10.1016/j.jphotobiol.2019.111514
    Retinal disorders account for a large proportion of ocular disorders that can lead to visual impairment or blindness, and yet our limited knowledge in the pathogenesis and choice of appropriate animal models for new treatment modalities may contribute to ineffective therapies. Although genetic in vivo models are favored, the variable expressivity and penetrance of these heterogeneous disorders can cause difficulties in assessing potential treatments against retinal degeneration. Hence, an attractive alternative is to develop a chemically-induced model that is both cost-friendly and standardizable. Sodium iodate is an oxidative chemical that is used to simulate late stage retinitis pigmentosa and age-related macular degeneration. In this study, retinal degeneration was induced through systemic administration of sodium iodate (NaIO3) at varying doses up to 80 mg/kg in Sprague-Dawley rats. An analysis on the visual response of the rats by electroretinography (ERG) showed a decrease in photoreceptor function with NaIO3 administration at a dose of 40 mg/kg or greater. The results correlated with the TUNEL assay, which revealed signs of DNA damage throughout the retina. Histomorphological analysis also revealed extensive structural lesions throughout the outer retina and parts of the inner retina. Our results provided a detailed view of NaIO3-induced retinal degeneration, and showed that the administration of 40 mg/kg NaIO3 was sufficient to generate disturbances in retinal function. The pathological findings in this model reveal a degenerating retina, and can be further utilized to develop effective therapies for RPE, photoreceptor, and bipolar cell regeneration.
  5. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
  6. Subramaniam S, Anandha Rao JS, Ramdas P, Ng MH, Kannan Kutty M, Selvaduray KR, et al.
    Clin Exp Immunol, 2021 Nov;206(2):161-172.
    PMID: 34331768 DOI: 10.1111/cei.13650
    Gamma-tocotrienol (γT3) is an analogue of vitamin E with beneficial effects on the immune system, including immune-modulatory properties. This study reports the immune-modulatory effects of daily supplementation of γT3 on host T helper (Th) and T regulatory cell (Treg ) populations in a syngeneic mouse model of breast cancer. Female BALB/c mice were fed with either γT3 or vehicle (soy oil) for 2 weeks via oral gavage before they were inoculated with syngeneic 4T1 mouse mammary cancer cells (4T1 cells). Supplementation continued until the mice were euthanized. Mice (n = 6) were euthanized at specified time-points for various analysis (blood leucocyte, cytokine production and immunohistochemistry). Tumour volume was measured once every 7 days. Gene expression studies were carried out on tumour-specific T lymphocytes isolated from splenic cultures. Supplementation with γT3 increased CD4+ (p 
  7. Ng MH, Nu'man AH, Hasliyanti A
    J Sep Sci, 2024 Feb;47(4):e2300842.
    PMID: 38403445 DOI: 10.1002/jssc.202300842
    The study explored ferulic acid extraction from palm empty fruit bunch (EFB) fiber using deep eutectic solvent (DES) of chlorine chloride-acetic acid as the extraction medium and the way to recover and recycle the DES thereafter. Antisolvent was added to selectively precipitate the ferulic acid, which was recovered by filtration thereafter. Recycling the DES without further purification led to increased ferulic acid yield with each subsequent extraction, likely due to retained ferulic acid. The retained ferulic acid and other impurities could be removed by precipitation brought upon by the addition of a second antisolvent. 1H nuclear magnetic resonance revealed that there was no excess ferulic acid in the recycled DES-treated with two types of antisolvents (ethanol and water). The yield of ferulic acid increased from 0.1367-0.1856 g/g when treated with only one antisolvent to 0.1368-0.2897 g/g with two antisolvent treatments. Oil droplets were also observed in the DES upon the addition of antisolvent 2, with recovered oil ranging from 0.6% to 3%. The study emphasized the significance of using DES as an extraction medium for ferulic acid from oil palm EFB fiber and the method to recycle the DES for subsequent processes.
  8. Seet WT, Mat Afandi MA, Ishak MF, Hassan MNF, Ahmat N, Ng MH, et al.
    Stem Cell Res Ther, 2023 Oct 20;14(1):298.
    PMID: 37858277 DOI: 10.1186/s13287-023-03536-9
    Treatments for skin injuries have recently advanced tremendously. Such treatments include allogeneic and xenogeneic transplants and skin substitutes such as tissue-engineered skin, cultured cells, and stem cells. The aim of this paper is to discuss the general overview of the quality assurance and quality control implemented in the manufacturing of cell and tissue product, with emphasis on our experience in the manufacturing of MyDerm®, an autologous bilayered human skin substitute. Manufacturing MyDerm® requires multiple high-risk open manipulation steps, such as tissue processing, cell culture expansion, and skin construct formation. To ensure the safety and efficacy of this product, the good manufacturing practice (GMP) facility should establish a well-designed quality assurance and quality control (QA/QC) programme. Standard operating procedures (SOP) should be implemented to ensure that the manufacturing process is consistent and performed in a controlled manner. All starting materials, including tissue samples, culture media, reagents, and consumables must be verified and tested to confirm their safety, potency, and sterility. The final products should also undergo a QC testing series to guarantee product safety, efficacy, and overall quality. The aseptic techniques of cleanroom operators and the environmental conditions of the facility are also important, as they directly influence the manufacturing of good-quality products. Hence, personnel training and environmental monitoring are necessary to maintain GMP compliance. Furthermore, risk management implementation is another important aspect of QA/QC, as it is used to identify and determine the risk level and to perform risk assessments when necessary. Moreover, procedures for non-conformance reporting should be established to identify, investigate, and correct deviations that occur during manufacturing. This paper provides insight and an overview of the QA/QC aspect during MyDerm® manufacturing in a GMP-compliant facility in the Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia.
  9. Anjum A, Cheah YJ, Yazid MD, Daud MF, Idris J, Ng MH, et al.
    Biol Res, 2022 Dec 09;55(1):38.
    PMID: 36494836 DOI: 10.1186/s40659-022-00407-0
    BACKGROUND: Excitotoxicity-induced in vivo injury models are vital to reflect the pathophysiological features of acute spinal cord injury (SCI) in humans. The duration and concentration of chemical treatment controls the extent of neuronal cell damage. The extent of injury is explained in relation to locomotor and behavioural activity. Several SCI in vivo methods have been reported and studied extensively, particularly contusion, compression, and transection models. These models depict similar pathophysiology to that in humans but are extremely expensive (contusion) and require expertise (compression). Chemical excitotoxicity-induced SCI models are simple and easy while producing similar clinical manifestations. The kainic acid (KA) excitotoxicity model is a convenient, low-cost, and highly reproducible animal model of SCI in the laboratory. The basic impactor approximately cost between 10,000 and 20,000 USD, while the kainic acid only cost between 300 and 500 USD, which is quite cheap as compared to traditional SCI method.

    METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher.

    RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment.

    CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.

  10. Goh PS, Ng MH, Choo YM, Amru NB, Chuah CH
    Molecules, 2015;20(11):19936-46.
    PMID: 26556328 DOI: 10.3390/molecules201119666
    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.
  11. Yeo GEC, Ng MH, Nordin FB, Law JX
    Int J Mol Sci, 2021 May 27;22(11).
    PMID: 34072224 DOI: 10.3390/ijms22115749
    Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
  12. Ng CY, Chai JY, Foo JB, Mohamad Yahaya NH, Yang Y, Ng MH, et al.
    Int J Nanomedicine, 2021;16:6749-6781.
    PMID: 34621125 DOI: 10.2147/IJN.S327059
    Treatment of cartilage defects such as osteoarthritis (OA) and osteochondral defect (OCD) remains a huge clinical challenge in orthopedics. OA is one of the most common chronic health conditions and is mainly characterized by the degeneration of articular cartilage, shown in the limited capacity for intrinsic repair. OCD refers to the focal defects affecting cartilage and the underlying bone. The current OA and OCD management modalities focus on symptom control and on improving joint functionality and the patient's quality of life. Cell-based therapy has been evaluated for managing OA and OCD, and its chondroprotective efficacy is recognized mainly through paracrine action. Hence, there is growing interest in exploiting extracellular vesicles to induce cartilage regeneration. In this review, we explore the in vivo evidence of exosomes on cartilage regeneration. A total of 29 in vivo studies from the PubMed and Scopus databases were identified and analyzed. The studies reported promising results in terms of in vivo exosome delivery and uptake; improved cartilage morphological, histological, and biochemical outcomes; enhanced subchondral bone regeneration; and improved pain behavior following exosome treatment. In addition, exosome therapy is safe, as the included studies documented no significant complications. Modifying exosomal cargos further increased the cartilage and subchondral bone regeneration capacity of exosomes. We conclude that exosome administration is a potent cell-free therapy for alleviating OA and OCD. However, additional studies are needed to confirm the therapeutic potential of exosomes and to identify the standard protocol for exosome-based therapy in OA and OCD management.
  13. Lim WL, Chowdhury SR, Ng MH, Law JX
    PMID: 33947053 DOI: 10.3390/ijerph18094764
    Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton's jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200-800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue's collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.
  14. Sulaiman S, Rani RA, Mohamad Yahaya NH, Tabata Y, Hiraoka Y, Seet WT, et al.
    Tissue Eng Part C Methods, 2022 10;28(10):557-569.
    PMID: 35615885 DOI: 10.1089/ten.TEC.2022.0073
    The use of gelatin microspheres (GMs) as a cell carrier has been extensively researched. One of its limitations is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of crosslinking agents to circumvent the constraint. Thus, this study examines two different methods of crosslinking and their effect on the microsphere's physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical (dehydrothermal [DHT]) and natural (genipin) crosslinking of the three-dimensional (3D) GM. We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in an isotonic solution, at 37°C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the crosslinking treatments. The crosslinked GM demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells. In addition, the crosslinked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that crosslinked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared with non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for crosslinking the GM to promote better cartilage tissue regeneration.
  15. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E
    Int J Nanomedicine, 2020;15:9961-9974.
    PMID: 33324057 DOI: 10.2147/IJN.S276355
    Vitamin E belongs to the family of lipid-soluble vitamins and can be divided into two groups, tocopherols and tocotrienols, with four isomers (alpha, beta, gamma and delta). Although vitamin E is widely known as a potent antioxidant, studies have also revealed that vitamin E possesses anti-inflammatory properties. These crucial properties of vitamin E are beneficial in various aspects of health, especially in neuroprotection and cardiovascular, skin and bone health. However, the poor bioavailability of vitamin E, especially tocotrienols, remains a great limitation for clinical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. This review focuses on the pharmacological properties and pharmacokinetics of vitamin E and current advances in vitamin E nanoformulations for future clinical applications. The limitations and future recommendations are also discussed in this review.
  16. Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, et al.
    Tissue Eng Regen Med, 2019 08;16(4):365-384.
    PMID: 31413941 DOI: 10.1007/s13770-019-00193-z
    BACKGROUND: Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering.

    METHODs: Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database.

    RESULTS: Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering.

    CONCLUSION: Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.

  17. Lokanathan Y, Ng MH, Hasan S, Ali A, Mahmod M, Htwe O, et al.
    J Biosci Bioeng, 2014 Aug;118(2):231-4.
    PMID: 24598302 DOI: 10.1016/j.jbiosc.2014.02.002
    We evaluated bridging of 15 mm nerve gap in rat sciatic nerve injury model with muscle-stuffed vein seeded with olfactory ensheathing cells as a substitute for nerve autograft. Neurophysiological recovery, as assessed by electrophysiological analysis was faster in the constructed biological nerve conduit compared to that of autograft.
  18. Hassan NH, Sulong AF, Ng MH, Htwe O, Idrus RB, Roohi S, et al.
    J Orthop Res, 2012 Oct;30(10):1674-81.
    PMID: 22411691 DOI: 10.1002/jor.22102
    Autologous nerve grafts to bridge nerve gaps have donor site morbidity and possible neuroma formation resulting in development of various methods of bridging nerve gaps without using autologous nerve grafts. We have fabricated an acellular muscle stuffed vein seeded with differentiated mesenchymal stem cells (MSCs) as a substitute for nerve autografts. Human vein and muscle were both decellularized by liquid nitrogen immersion with subsequent hydrolysis in hydrochloric acid. Human MSCs were subjected to a series of treatments with a reducing agent, retinoic acid, and a combination of trophic factors. The differentiated MSCs were seeded on the surface of acellular muscle tissue and then stuffed into the vein. Our study showed that 35-75% of the cells expressed neural markers such as S100b, glial fibrillary acidic protein (GFAP), p75 NGF receptor, and Nestin after differentiation. Histological and ultra structural analyses of muscle stuffed veins showed attachment of cells onto the surface of the acellular muscle and penetration of the cells into the hydrolyzed fraction of muscle fibers. We implanted these muscle stuffed veins into athymic mice and at 8 weeks post-implantation, the acellular muscle tissue had fully degraded and replaced with new matrix produced by the seeded cells. The vein was still intact and no inflammatory reactions were observed proving the biocompatibility and biodegradability of the conduit. In conclusion, we have successfully formed a stable living nerve conduit which may serve as a substitute for autologous nerves.
  19. Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835438 DOI: 10.3390/ijms24044026
    Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
  20. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E
    Nanomaterials (Basel), 2021 Sep 29;11(10).
    PMID: 34685010 DOI: 10.3390/nano11102569
    Nano-hydroxyapatite (nHA) has been widely used as an orthopedic biomaterial and vehicle for drug delivery owing to its chemical and structural similarity to bone minerals. Several studies have demonstrated that nHA based biomaterials have a potential effect for bone regeneration with very minimal to no toxicity or inflammatory response. This systematic review aims to provide an appraisal of the effectiveness of nHA as a delivery system for bone regeneration and whether the conjugation of proteins, antibiotics, or other bioactive molecules to the nHA further enhances osteogenesis in vivo. Out of 282 articles obtained from the literature search, only 14 articles met the inclusion criteria for this review. These studies showed that nHA was able to induce bone regeneration in various animal models with large or critical-sized bone defects, open fracture, or methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis. The conjugations of drugs or bioactive molecules such as bone-morphogenetic protein-2 (BMP-2), vancomycin, calcitriol, dexamethasone, and cisplatin were able to enhance the osteogenic property of nHA. Thus, nHA is a promising delivery system for a variety of compounds in promoting bone regeneration in vivo.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links