Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Chan WP, Veksha A, Lei J, Oh WD, Dou X, Giannis A, et al.
    J Environ Manage, 2019 Mar 15;234:65-74.
    PMID: 30616190 DOI: 10.1016/j.jenvman.2018.12.107
    A novel, cost-effective and real-time process monitoring and control system was developed to maintain stable operation of waste-to-energy gasification process. It comprised a feedback loop control that utilized the differential temperatures of the oxidation and reduction zones in the gasifier to determine the regional heat-flow (endothermic or exothermic), to assess the availability of oxidizing agent (for instance, air or O2) at the char bed and to calculate the fuel feeding rate. Based on the correlations developed, the air-to-fuel ratio or the equivalence air ratio (ER) for air gasification could be instantaneously adjusted to maintain stable operation of the gasifier. This study demonstrated a simplification of complex reaction dynamics in the gasification process to differential temperature profiling of the gasifier. The monitoring and control system was tested for more than 70 h of continuous operation in a downdraft fixed-bed gasifier with refuse-derived fuel (RDF) prepared from municipal solid wastes (MSW). With the system, fuel feeding rate could be adjusted accurately to stabilize the operating temperature and ER in the gasifier and generate syngas with consistent properties. Significant reductions in the fluctuations of temperature profiles at oxidation and reduction zones (from higher than 100 °C to lower than 50 °C), differential temperatures (from ±200 to ±50 °C) in gasifier and the flow rate (from 16 ± 6.5 to 12 ± 1.8 L/min), composition of main gas components, LHV (from 6.2 ± 3.1 to 5.7 ± 1.6 MJ/Nm3) and tar content (from 8.0 ± 9.7 to 7.5 ± 4.2 g/Nm3) of syngas were demonstrated. The developed gasifier monitoring and control system is adaptable to various types (updraft, downdraft, and fluidized-bed) and scales (lab, pilot, large scale) of gasifiers with different types of fuel.
  2. Oh WD, Ho YC, Mohamad M, Ho CD, Ravi R, Lim JW
    Materials (Basel), 2021 Sep 14;14(18).
    PMID: 34576510 DOI: 10.3390/ma14185284
    Activated zero-valent iron (Ac-ZVI) coupled with Fe3+ was employed to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) for acid orange 7 (AO7) removal. Fe3+ was used to promote Fe2+ liberation from Ac-ZVI as an active species for reactive oxygen species (ROS) generation. The factors affecting AO7 degradation, namely, the Ac-ZVI:Fe3+ ratio, PMS/PDS dosage, and pH, were compared. In both PMS and PDS systems, the AO7 degradation rate increased gradually with increasing Fe3+ concentration at fixed Ac-ZVI loading due to the Fe3+-promoted liberation of Fe2+ from Ac-ZVI. The AO7 degradation rate increased with increasing PMS/PDS dosage due to the greater amount of ROS generated. The degradation rate in the PDS system decreased while the degradation rate in the PMS system increased with increasing pH due to the difference in the PDS and PMS activation mechanisms. On the basis of the radical scavenging study, sulfate radical was identified as the dominant ROS in both systems. The physicochemical properties of pristine and used Ac-ZVI were characterized, indicating that the used Ac-ZVI had an increased BET specific surface area due to the formation of Fe2O3 nanoparticles during PMS/PDS activation. Nevertheless, both systems displayed good reusability and stability for at least three cycles, indicating that the systems are promising for pollutant removal.
  3. Ng JJ, Sim LC, Oh WD, Saravanan P, Tan B, Leong KH
    Environ Sci Pollut Res Int, 2022 Dec;29(57):86068-86076.
    PMID: 34523092 DOI: 10.1007/s11356-021-16449-y
    Herein, we report a detailed study on creating heterojunction between graphitic carbon nitride (g-C3N4) and bismuth phosphate (BiPO4), enhancing the unpaired free electron mobility. This leads to an accelerated photocatalysis of 2,4-dichlorophenols (2,4-DCPs) under sunlight irradiation. The heterojunction formation was efficaciously conducted via a modest thermal deposition technique. The function of g-C3N4 plays a significant role in generating free electrons under sunlight irradiation. Together, the generated electrons at the g-C3N4 conduction band (CB) are transferred and trapped by the BiPO4 to form active superoxide anion radicals (•O2-). These active radicals will be accountable for the photodegradation of 2,4-DCPs. The synthesized composite characteristics were methodically examined through several chemical and physical studies. Due to the inimitable features of both g-C3N4 and BiPO4, its heterojunction formation, 2.5wt% BiPO4/g-C3N4 achieved complete 2,4-DCP removal (100%) in 90 min under sunlight irradiation. This is due to the presence of g-C3N4 that enhanced electron mobility through the formation of heterojunctions that lengthens the electron-hole pairs' lifetime and maximizes the entire solar spectrum absorption to generate active electrons at the g-C3N4 conduction band. Thus, this formation significantly draws the attention for future environmental remediation, especially in enhancing the entire solar spectrum's harvesting.
  4. Sani S, Adnan R, Oh WD, Iqbal A
    Nanomaterials (Basel), 2021 Oct 16;11(10).
    PMID: 34685183 DOI: 10.3390/nano11102742
    The influence of variable reaction time (tr) on surface/textural properties (surface area, total pore volume, and pore diameter) of carbon-encapsulated magnetite (Fe3O4@C) nanocomposites fabricated by a hydrothermal process at 190 °C for 3, 4, and 5 h was studied. The properties were calculated using the Brunauer-Emmett-Teller (BET) isotherms data. The nanocomposites were characterised using Fourier transform infrared spectroscopy, X-ray diffraction analysis, thermogravimetry, and scanning and transmission electron microscopies. Analysis of variance shows tr has the largest effect on pore volume (F value = 1117.6, p value < 0.0001), followed by the surface area (F value = 54.8, p value < 0.0001) and pore diameter (F value = 10.4, p value < 0.001) with R2-adjusted values of 99.5%, 88.5% and 63.1%, respectively. Tukey and Fisher tests confirmed tr rise to have caused increased variations in mean particle sizes (11-91 nm), crystallite sizes (5-21 nm), pore diameters (9-16 nm), pore volume (0.017-0.089 cm3 g-1) and surface area (7.6-22.4 m2 g-1) of the nanocomposites with individual and simultaneous confidence limits of 97.9 and 84.4 (p-adj < 0.05). The nanocomposites' retained Fe-O vibrations at octahedral (436 cm-1) and tetrahedral (570 cm-1) cubic ferrite sites, modest thermal stability (37-60 % weight loss), and large volume-specific surface area with potential for catalytic application in advanced oxidation processes.
  5. Bao Y, Oh WD, Lim TT, Wang R, Webster RD, Hu X
    Water Res, 2019 03 15;151:64-74.
    PMID: 30594091 DOI: 10.1016/j.watres.2018.12.007
    In this work, nano-bimetallic Co/Fe oxides with different stoichiometric Co/Fe ratios were prepared using a novel one-step solution combustion method. The nano-bimetallic Co/Fe oxides were used for sulfamethoxazole (SMX) degradation via peroxymonosulfate (PMS) activation. The stoichiometric efficiencies of the as-prepared nano-bimetallic catalysts were calculated and compared for the first time. The radical generation was identified by electron paramagnetic resonance (EPR) as well as chemical quenching experiments, in which different scavengers were used and compared. The catalytic PMS activation mechanism in the presence of catalyst was examined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that besides SO4•- and •OH, •OOH was also detected in the PMS/CoFeO2.5 system. Meanwhile, in addition to the previously proposed radical oxidation pathway, the results showed that SMX degradation also involved a non-radical oxidation, which could be verified by the degradation experiment without catalyst as well as the detection of 1O2. In the PMS activation process, cobalt functioned as the active site on CoFeO2.5 while Fe oxide functioned as the adsorption site. The electron transfer mechanism was proposed based on the XPS and metal leaching results. Additionally, via the detection of transformation products, different SMX transformation pathways involving nitration, hydroxylation and hydrolysis in the PMS/CoFeO2.5 system were proposed.
  6. Zhang R, Zhang Y, Goei R, Oh WD, Zhang Z, He C
    J Environ Manage, 2023 Oct 15;344:118441.
    PMID: 37379626 DOI: 10.1016/j.jenvman.2023.118441
    To realize sound disposal of hyperaccumulator harvested from phytoremediation, hydrothermal carbonization (HTC) has been employed to obtain superior hydrochar adsorbents for removal of phosphate and ammonium from water body. A series of hydrochars have been prepared under tuned HTC conditions to tailor hydrochar with desired properties. Generally, increased temperature and prolonged reaction time facilitated acidic oxygen functional groups on hydrochars, thereby improving adsorption capacity of hydrochar. In single solute system, a superior hydrochar, derived from HTC under 260 °C for 2 h, achieved a maximum phosphate and ammonium adsorption capacity of 52.46 mg/g and 27.56 mg/g at 45 °C, respectively. In binary system, synergistic adsorption was observed only in lower solute concentration, whereas competitive adsorption occurred under higher solute concentration. Characterization and adsorption kinetics suggested chemisorption may dominate the adsorption process, thus the adsorption capacity could be improved by tuning pHpzc of hydrochar. This study firstly demonstrates the sustainable utilization of hyperaccumulators into nutrients-enriched hydrochar as fertilizer for in-situ phytoremediation of contaminated sites with minimized environmental risks towards circular economy.
  7. Vo TP, Rintala J, Dai L, Oh WD, He C
    Water Res, 2023 Oct 15;245:120672.
    PMID: 37783176 DOI: 10.1016/j.watres.2023.120672
    Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180-300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC-MS) was further complementarily applied with GC-MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.
  8. Lim JW, Mohd-Noor SN, Wong CY, Lam MK, Goh PS, Beniers JJA, et al.
    J Environ Manage, 2019 Feb 01;231:129-136.
    PMID: 30340132 DOI: 10.1016/j.jenvman.2018.10.022
    The black soldier fly larvae (BSFL) have been widely extolled for the application in managing various solid organic wastes. Owing to the saprophagous nature of BSFL, a rapid valorization of solid organic wastes can be accomplished with the simultaneous production of valuable biochemical compounds derived from larval biomass. In the present works, the mixed waste coconut endosperm (w-CE) and soybean curd residue (SC-r) substrates with increasing protein nutritional constituent were administered to BSFL. The correlations between protein from larval feed substrates and nutritional profiles of BSFL biomasses were ultimately unveiled. The protein from larval feed substrates could be increased by increasing of SC-r portion against w-CE. At the w-CE:SC-r ratio of 3:2, the highest larval total weight gained and growth rate were attained; indicating an optimum protein nutritional constituent in mixed organics (12.4%) that could enhance the BSFL palatability. Further increment of protein nutritional constituent in mixed organics was found acidifying the residual larval feed substrate progressively, undermining the growth of BSFL. By feeding the BSFL with optimum mixed organics, the maximum accumulations of larval lipid and protein could be achieved. Transesterification of extracted lipid had demonstrated high in monounsaturated fatty acids (73%) which was suitable for biodiesel. The BSFL palatability was finally confirmed from the bioconversion viewpoint of mixed organic wastes. Again, achieving the highest bioconversion efficiency of 14% into larval biomass after accounting the metabolic loss of 54%. Therefore, a total of 68% of mixed w-CE and SC-r could be successfully bioconverted.
  9. Lin KA, Oh WD, Zheng MW, Kwon E, Lee J, Lin JY, et al.
    J Colloid Interface Sci, 2021 Jun 15;592:416-429.
    PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030
    Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
  10. Oh WD, Zaeni JRJ, Lisak G, Lin KA, Leong KH, Choong ZY
    Chemosphere, 2021 Aug;277:130313.
    PMID: 33780679 DOI: 10.1016/j.chemosphere.2021.130313
    Engineered biochar is increasingly regarded as a cost-effective and eco-friendly peroxymonosulfate (PMS) activator. Herein, biochar doped with nitrogen and sulfur moieties was prepared by pyrolysis of wood shavings and doping precursor. The doping precursor consists of either urea, thiourea or 1:1 w/w mixture of urea and thiourea (denoted as NSB-U, NSB-T and NSB-UT, respectively). The physicochemical properties of the NSBs were extensively characterized, revealing that they are of noncrystalline carbon with porous structure. The NSBs were employed as PMS activator to degrade organic pollutants particularly methylene blue (MB). It was found that NSB-UT exhibited higher MB removal rate with kapp = 0.202 min-1 due to its relatively high surface area and favorable intrinsic surface moieties (combination of graphitic N and thiophenic S). The effects of catalyst loading, PMS dosage and initial pH were evaluated. Positive enhancement of the MB removal rate can be obtained by carefully increasing the catalyst loading or PMS dosage. Meanwhile, the MB removal rate is greatly influenced by pH due to electrostatic interactions and pH dependent reactions. The NSB-UT can be reused for several cycles to some extent and its catalytic activity can be restored by thermal treatment. Based on the radical scavenger study and XPS analysis, the nonradical pathway facilitated by the graphitic N and thiophenic S active sites are revealed to be the dominant reaction pathway. Overall, the results of this study show that engineered biochar derived from locally available biowaste can be transformed into PMS activator for environmental applications.
  11. Tuan DD, Oh WD, Ghanbari F, Lisak G, Tong S, Andrew Lin KY
    J Colloid Interface Sci, 2020 Nov 01;579:109-118.
    PMID: 32574728 DOI: 10.1016/j.jcis.2020.05.033
    As sulfate-radical (SR)-based advanced oxidation processes are increasingly implemented, Oxone has been frequently-used for generation of SR. While Co3O4 nanoparticle (NP) has been widely-accepted as a promising catalyst for activating Oxone, Co3O4 NPs tend to aggregate in water, losing their reactivity. Thus, many attempts have immobilized Co3O4 NPs on supports, especially carbonaceous substrates, because combination of Co NPs with carbon substrates offers synergistic effects for boosting catalytic activities. Moreover, carbon substrates doped with hetero-atoms (N and S) further increase electron transfer and reactivity. Therefore, it is even promising to immobilize Co NPs onto N/S-doped carbon (NSC) to form Co-embedded NSC (denoted as CoNSC) for enhancing Oxone activation. In this study, a convenient and facile technique is proposed to prepare such a CoNSC via a simple carbonization treatment of a coordination polymer of Co and trithiocyanuric acid (TTCA). The resulting CoNSC exhibits the sheet-like hexagonal morphology with the core-shell configuration, and Co NPs are well-embedded into the N/S-doped carbonaceous matrix, making it an advantageous heterogeneous catalyst for Oxone activation. As Azorubine S (ARS) decolorization is employed as a model reaction of Oxone activation, CoNSC exhibits a higher catalytic activity than pristine Co3O4 and NSC for Oxone activation to decolorize ARS. In comparison to the other reported catalysts, CoNSC also possesses a much lower Ea for ARS decolorization. CoNSC can be also reusable and stable for Oxone activation over multiple cycles without loss of catalytic activity. These features validate that CoNSC is a promising and useful Co-based catalyst for Oxone activation.
  12. Doan Trang T, Lee J, Oh WD, Kwon E, Wang H, Fai Tsang Y, et al.
    J Colloid Interface Sci, 2023 Dec 15;652(Pt A):1028-1042.
    PMID: 37639925 DOI: 10.1016/j.jcis.2023.08.091
    While transition metals are useful for activating monopersulfate (MPS) to degrade contaminants, bimetallic alloys exhibit stronger catalytic activities owing to several favorable effects. Therefore, even though Co is an efficient metal for MPS activation, CoFe alloys are even more promising heterogeneous catalysts for MPS activation. Immobilization/embedment of CoFe alloy nanoparticles (NPs) onto hetero-atom-doped carbon matrices appears as a practical strategy for evenly dispersing CoFe NPs and enhancing catalytic activities via interfacial synergies between CoFe and carbon. Herein, N-doped carbon-embedded CoFe alloy (NCCF) is fabricated here to exhibit a unique hollow-engineered nanostructure and the composition of CoFe alloy by using Co-ZIF as a precursor after the facile etching and Fe doping. The Fe dopant embeds CoFe alloy NPs into the hollow-structured N-doped carbon substrate, enabling NCCF to possess the higher mesoscale porosity, active N species as well as more superior electrochemical properties than its analogue without Fe dopants, carbon matrix-supported cobalt (NCCo). Thus, NCCF exhibits a considerably larger activity than NCCo and the benchmark catalyst, Co3O4 NP, for MPS activation to degrade an environmental hormone, dihydroxydiphenyl ketone (DHPK). Besides, NCCF + MPS shows an even lower activation energy for DHPK degradation than literatures, and retains its high efficiency for eliminating DHPK in different water media. DHPK degradation pathway and ecotoxicity assessment are unraveled based on the insights from the computational chemistry, demonstrating that DHPK degradation by NCCF + MPS did not result in the formation of toxic and highly toxic by-products. These features make NCCF a promising heterogeneous catalyst for MPS activation to degrade DHPK.
  13. Ahmad ARD, Imam SS, Adnan R, Oh WD, Abdul Latip AF, Ahmad AAD
    Int J Biol Macromol, 2023 Feb 28;229:838-848.
    PMID: 36586654 DOI: 10.1016/j.ijbiomac.2022.12.287
    The primary aim of this study is to develop an economical, stable, and effective heterogeneous catalyst for wastewater remediation via the Fenton oxidation process. For this purpose, Fe3O4-montmorillonite alginate (FeMA) composite beads were synthesized by entrapping Fe3O4-montmorillonite in calcium alginate beads. The performance of the catalysts was evaluated via the Fenton degradation of ofloxacin (OFL), an antibiotic that is frequently detected in water bodies. The physiochemical properties of the FeMA composite beads were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). FeMA composite beads were found to have a higher surface area, higher porosity, and better thermal stability compared to pristine alginate beads. The composite beads were subsequently used for Fenton degradation of ofloxacin (OFL) in an aqueous solution. The effects of Fe3O4-montmorillonite loading on alginate, FeMA composite beads dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, and inorganic salts on Fenton degradation of OFL in aqueous solution was investigated. The results revealed that the percentage of OFL degradation reached about 80 % under optimized conditions, while the total organic carbon (TOC) removal reached about 53 %. The entrapment of Fe3O4-montmorillonite in alginate beads results in less iron ions leaching compared to previous observation, and the efficiency remains constant over the five cycles investigated. The kinetics of the Fenton degradation process are best fitted to the pseudo-first-order kinetic model. It is therefore believed that FeMA composite beads can be a promising material for wastewater remediation via the Fenton oxidation process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links