Bacterial resistance to various antimicrobial agents is common in area with high usage of antibiotics. In this study, the data on antimicrobial susceptibility patterns of Vibrio cholerae O1 from patients during an outbreak period was found to be high but variable rates of multidrug resistance. Thirty-two of 33 V. cholerae isolates harboured the tcp, ctx, zot and ace genes, suggesting their possible roles in the outbreak cases. We analyzed the molecular diversity of a total of 33 strains of V. cholerae O1 isolated from 33 patients between November 1997 and April 1998 using random amplified polymorphic DNA (RAPD) analysis. The 30 typable isolates could be separated into four major clusters containing 5, 17, 2 and 6 isolates, respectively. However, no particular RAPD pattern was predictive of a particular pattern of antibiotic susceptibility. The findings of this study showed that multiple clones seemed to be responsible for cases in the outbreaks in the study area.
Nine Escherichia coli O157: H7/- strains isolated primarily from non-clinical sources in Thailand and Japan carried the stx(2) gene but did not produce Stx2 toxin in a reversed passive latex agglutination (RPLA) assay. A strain (EDL933) bearing a stx(2) phage (933W) was compared to a strain (Thai-12) that was Stx2-negative but contained the stx(2) gene. To study the lack of Stx2 production, the Thai-12 stx(2) gene and its upstream nucleotide sequence were analyzed. The Thai-12 stx(2) coding region was intact and Stx2 was expressed from a cloned stx(2) gene using a plasmid vector and detected using RPLA. A lacZ fusion analysis found the Thai-12 stx(2) promoter non-functional. Because the stx(2) gene is downstream of the late promoter in the stx(2) phage genome, the antitermination activity of Q protein is essential for strong stx(2) transcription. Thai-12 had the q gene highly homologous to that of Phi21 phage but not to the 933W phage. High-level expression of exogenous q genes demonstrated Q antitermination activity was weak in Thai-12. Replication of stx(2) phage was not observed in Stx2-negative strains. The q-stx(2) gene sequence of Thai-12 was well conserved in all Stx2-negative strains. A PCR assay to detect the Thai-12 q-stx(2) sequence demonstrated that 30% of O157 strains from marketed Malaysian beef carried this sequence and they produced little or no Stx2. These results suggest that stx(2)-positive O157 strains that produce little or no Stx2 may be widely distributed in the Asian environment.
A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.
The peanut supply chain in Malaysia is dominated by three main stakeholders (importers, manufacturers, retailers). The present study aimed to determine the levels and critical points of aflatoxin and fungal contamination in peanuts along the supply chain. Specifically, two types of raw peanuts and six types of peanut-based products were collected (N = 178). Samples were analysed for aflatoxins by using high-performance liquid chromatography. Results revealed that the aflatoxin contamination was significantly higher (P ≤ 0.05) in raw peanuts and peanut-based products from the retailers. However, there was no significant difference (P ≥ 0.05) in fungal contamination for both types of peanuts except for the total fungal count in raw peanuts from the retailers. Furthermore, raw peanut kernels from the retailers were the most contaminated ones ranged from
Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, and Salmonella Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL-1 was >3 Log10 units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
Fresh pennywort (Centella asiatica) is usually eaten raw as 'ulam' or salad-like lettuce. Unfortunately, the fresh pennywort has the potential to cause foodborne outbreaks due to pathogens present on the surface and between the leaves, as washing the pennywort using tap water alone cannot guarantee that the pathogens are eliminated. Thus, the efficacies of several sanitizing solutions, i.e., sodium chloride, sodium hypochlorite, acetic acid, acidic electrolyzed water (acidic EW), alkaline electrolyzed water (alkaline EW), and a combination of acidic EW and alkaline EW (acidic-alkaline EW), were evaluated for their potential applications as washing solutions for pennywort. Washing using acidic EW alone or in combination with alkaline EW (two-step washing) reduced the microbial count. In sensory evaluation, all sanitizer solutions were accepted by the panellists with a score greater than 5, except those washing with acetic acid. Overall, the use of acidic EW, either alone or in combination with alkaline EW, was the best treatment to decontaminate microbes while maintaining the physicochemical and sensory properties of pennywort leaves.
Filth flies at wet markets can be a vector harbouring multiple antimicrobial-resistant (MAR) nontyphoidal Salmonella (NTS), and such strains are a significant threat to public health as they may cause severe infections in humans. This study aims to investigate the prevalence of antimicrobial-resistant NTS, especially Salmonella Enteritidis and S. Typhimurium harboured by filth flies at wet markets, and investigate their survival in the simulated gastric fluid (SGF). Filth flies (n = 90) were captured from wet markets in Klang, Malaysia, and processed to isolate Salmonella spp. The isolates (n = 16) were identified using the multiplex-touchdown PCR and assessed their antimicrobial susceptibility against 11 antimicrobial agents. Finally, three isolates with the highest MAR index were subjected to SGF survival tests. It was observed that 17.8 % of flies (n = 16/90) harbouring Salmonella, out of which 10 % (n = 9/90) was S. Enteritidis, 2.2 % (n = 2/90) was S. Typhimurium, and 5.6 % was unidentified serotypes of Salmonella enterica subsp. I. 43.8 % (n = 7/16) were confirmed as MAR, and they were observed to be resistant against ampicillin, chloramphenicol, kanamycin, streptomycin, and nalidixic acid. Three strains, F35, F75, and F85 demonstrated the highest MAR index and were able to survive (>6-log10) in the SGF (180 min), indicating their potential virulence and invasiveness. This study provides significant insights into the prevalence and severity of MAR nontyphoidal Salmonella harboured by filth flies in wet markets, which may help inform strategies for controlling the spread and outbreak of foodborne disease.
Twenty-one Vibrio parahaemolyticus isolates representing 21 samples of coastal seawater from three beaches in peninsular Malaysia were found to be sensitive to streptomycin, norfloxacin and chloramphenicol. Resistance was observed to penicillin (100%), ampicillin (95.2%), carbenicilin (95.2%), erythromycin (95.2%), bacitracin (71.4%), cephalothin (28.6%), moxalactam (28.6%), kanamycin (19.1%), tetracycline (14.3%), nalidixic acid (9.5%) and gentamicin (9.5%). Plasmids of 2.6 to 35.8 mDa were detected among plasmid-containing isolates. All isolates carried the Vp-toxR gene specific to V. parahaemolyticus and were negative for the tdh gene, but only one isolate was positive for the trh gene. DNA fingerprinting of the isolates using ERIC-PCR and PFGE showed that the isolates belong to two major clonal groups, with several isolates from different locations in the same group, indicating the presence of similar strains in the different locations.
Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.
There have been a number of studies conducted in order to compare the efficiencies of recovery rates, utilizing different protocols, for the isolation of L. monocytogenes. However, the severity of multiple cell injury has not been included in these studies. In the current study, L. monocytogenes ATCC 19112 was injured by exposure to extreme temperatures (60°C and -20°C) for a one-step injury, and for a two-step injury the cells were transferred directly from a heat treatment to frozen state to induce a severe cell injury (up to 100% injury). The injured cells were then subjected to the US Food and Drug Administration (FDA), the ISO-11290, and the modified United States Department of Agriculture (mUSDA) protocols, and plated on TSAyeast (0.6% yeast), PALCAM agar, and CHROMAgar Listeria for 24 h or 48 h. The evaluation of the total recovery of injured cells was also calculated based on the costs involved in the preparation of media for each protocol. Results indicate that the mUSDA method is best able to aid the recovery of heat-injured, freeze-injured, and heat-freeze-injured cells and was shown to be the most cost effective for heat-freeze-injured cells.
Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.
The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
The main aim of this study was to combine the techniques of most probable number (MPN) and polymerase chain reaction (PCR) for quantifying the prevalence and numbers of Campylobacter spp. in ulam, a popular Malaysian salad dish, from a traditional wet market and two modern supermarkets in Selangor, Malaysia. A total of 309 samples of raw vegetables which are used in ulam were examined in the study. The prevalences of campylobacters in raw vegetables were, for supermarket I, Campylobacter spp., 51.9%; Campylobacter jejuni, 40.7%; and Campylobacter coli, 35.2%: for supermarket II, Campylobacter spp., 67.7%; C. jejuni, 67.7%; and C. coli, 65.7%: and for the wet market, Campylobacter spp., 29.4%; C. jejuni, 25.5%; and C. coli, 22.6%. In addition Campylobacter fetus was detected in 1.9% of raw vegetables from supermarket I. The maximum numbers of Campylobacter spp. in raw vegetables from supermarkets and the wet market were >2400 and 460 MPN/g, respectively.
This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.
Aspergillus flavus is the predominant species that produce aflatoxins in stored peanuts under favourable conditions. This study aimed to describe the growth and aflatoxin production by two A. flavus strains isolated from imported raw peanuts and to model the effects of temperature and aw on their colony growth rate as a function of temperature and aw in Peanut Meal Extract Agar (PMEA). A full factorial design with seven aw levels (0.85-0.98 aw) and five temperature levels (20-40 °C) was used to investigate the growth and aflatoxin production. Colony diameter was measured daily for 28 days while AFB1 and total aflatoxin were determined on day 3, 7, 14, and 21. The maximum colony growth rate, μmax (mm/day) was estimated by using the primary model of Baranyi, and the μmax was then fitted to the secondary model; second-order polynomial and linear Arrhenius-Davey to describe the colony growth rate as a function of temperature and aw. The results indicated that both strains failed to grow at temperature of 20 °C with aw <0.94 and aw of 0.85 for all temperatures except 30 °C. The highest growth rate was observed at 30 °C, with 0.98 aw for both strains. The analysis of variance showed a significant effect of strain, temperature, and aw on the fungal growth and aflatoxin production (p
Vibrio parahaemolyticus is a foodborne pathogen that is frequently isolated from a variety of seafood. To control this pathogenic Vibrio spp., the implementation of bacteriophages in aquaculture and food industries have shown a promising alternative to antibiotics. In this study, six bacteriophages isolated from the seafood samples demonstrated a narrow host range specificity that infecting only the V. parahaemolyticus strains. Morphological analysis revealed that bacteriophages Vp33, Vp22, Vp21, and Vp02 belong to the Podoviridae family, while bacteriophages Vp08 and Vp11 were categorized into the Siphoviridae family. All bacteriophages were composed of DNA genome and showed distinctive restriction fragment length polymorphism. The optimal MOI for bacteriophage propagation was determined to be 0.001 to 1. One-step growth curve revealed that the latent period ranged from 10 to 20 min, and the burst size of bacteriophage was approximately 17 to 51 PFU/cell. The influence of temperature and pH levels on the stability of bacteriophages showed that all bacteriophages were optimally stable over a wide range of temperatures and pH levels. In vitro lytic activity of all bacteriophages demonstrated to have a significant effect against V. parahaemolyticus. Besides, the application of a bacteriophage cocktail instead of a single bacteriophage suspension was observed to have a better efficiency to control the growth of V. parahaemolyticus. Results from this study provided a basic understanding of the physiological and biological properties of the isolated bacteriophages before it can be readily used as a biocontrol agent against the growth of V. parahaemolyticus.
Vibrio parahaemolyticus is a foodborne bacterial pathogen that may cause gastroenteritis in humans through the consumption of seafood contaminated with this microorganism. The emergence of antimicrobial and multidrug-resistant bacteria is another serious public health threat worldwide. In this study, the prevalence and antibiotic susceptibility test of V. parahaemolyticus in blood clams, shrimps, surf clams, and squids were determined. The overall prevalence of V. parahaemolyticus in seafood was 85.71% (120/140), consisting of 91.43% (32/35) in blood clam, 88.57% (31/35) in shrimps, 82.86% (29/35) in surf clams, and 80% (28/35) in squids. The majority of V. parahaemolyticus isolates from the seafood samples were found to be susceptible to most antibiotics except ampicillin, cefazolin, and penicillin. The MAR indices of V. parahaemolyticus isolates ranged from 0.04 to 0.71 and about 90.83% of isolates were found resistant to more than one antibiotic. The high prevalence of V. parahaemolyticus in seafood and multidrug-resistant isolates detected in this study could pose a potential risk to human health and hence appropriate control methods should be in place to minimize the potential contamination and prevent the emergence of antibiotic resistance.
Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
The present work investigated the profile and biodiversity of lactic acid bacteria (LAB) isolated from selected manufactured and homemade fermented foods in Malaysia. A total of 55 LAB were isolated from 20 samples, and identified based on the sequencing of 16S rRNA gene. The LAB isolates were identified as Lacticaseibacillus rhamnosus (34.5%), Lactiplantibacillus plantarum (20%), Limosilactobacillus fermentum (20%), Lacticaseibacillus paracasei (12.7%), Lacticaseibacillus casei (3.6%), Lactobacillus sp. (1.8%), Enterococcus faecalis (3.6%), Enterococcus faecium (1.8%), and Enterococcus durans (1.8%). Majority (94%) of the LAB isolates exhibited broad-spectrum antimicrobial activity against selected foodborne pathogens, and four isolates (L. fermentum SC1001, L. paracasei K2003, and L. rhamnosus KF1002 and MK2003) could produce bacteriocin-like inhibitory substance (BLIS). Lacticaseibacillus paracasei M1001 (homemade mozzarella) exhibited high-temperature tolerance and acid resistance, was homofermentative, and generated good antimicrobial activity, which strongly implied its potential for industrial applications. The present work results would potentially widen our knowledge of LAB diversity in Malaysian fermented foods and provide a potential for their applications in the food industry or other purposes.