Displaying publications 21 - 40 of 71 in total

Abstract:
Sort:
  1. Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, et al.
    Bioengineered, 2020 12;11(1):116-129.
    PMID: 31909681 DOI: 10.1080/21655979.2020.1711626
    The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
  2. Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, et al.
    Molecules, 2020 Nov 16;25(22).
    PMID: 33207534 DOI: 10.3390/molecules25225332
    Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.
  3. Tan JS, Teah KM, Hoe VC, Khairuddin A, Sellapan H, Hayati F, et al.
    Ann Med Surg (Lond), 2020 Nov;59:251-253.
    PMID: 33088499 DOI: 10.1016/j.amsu.2020.10.009
    Background: Adult intussusception is a relatively rare clinical entity. The majority of cases of intussusception in adults are due to a pathologic condition that serves as a lead point and requires surgery. Small bowel intussusception is usually caused by benign or malignant neoplasms appearing at the head of the invagination. Inflammatory fibroid polyp (IFP) of the small bowel is an unusual benign neoplastic lesion that has been rarely reported to cause intussusception, especially in the jejunum.

    Case presentation: We present a rare case of adult intussusception who presented with a triad of intestinal obstruction. Computed tomography revealed small bowel intussusception with bowel ischemia. Intraoperatively, she required resection of the small bowel and primary anastomosis. Macroscopic examination revealed a single pedunculated polyp, which is the lead point of intestinal obstruction and confirmed histologically.

    Conclusion: Inflammatory fibroid polyp should be considered as a cause of intussusception among adults with small bowel obstruction.

  4. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
  5. Abu Zarin M, Tan JS, Murugan P, Ahmad R
    BMC Complement Med Ther, 2020 Oct 19;20(1):317.
    PMID: 33076892 DOI: 10.1186/s12906-020-03113-0
    BACKGROUND: The banana or scientifically referred to as Musa sp., is one of the most popular fruits all over the world. Almost all parts of a banana tree, including the fruits, stem juice, and flowers are commonly used as traditional medicine for treating diarrhoea (unripe), menorrhagia, diabetes, dysentery, and antiulcerogenic, hypoglycemic, antilithic, hypolipidemic conditions, plus antioxidant actions, inflammation, pains and even snakebites. The study carried out was to evaluate in vitro anti-urolithiatic activity from different types of Musa pseudo-stems.

    METHODS: Observing anti-urolithiathic activity via in vitro nucleation and aggregation assay using a spectrophotometer followed by microscopic observation. A total of 12 methanolic extracts were tested to determine the potential extracts in anti-urolithiasis activities. Cystone was used as a positive control.

    RESULTS: The results manifested an inhibition of nucleation activity (0.11 ± 2.32% to 55.39 ± 1.01%) and an aggregation activity (4.34 ± 0.68% to 58.78 ± 1.81%) at 360 min of incubation time. The highest inhibition percentage in nucleation assay was obtained by the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic pseudo-stem extract (2D) which was 55.39 ± 1.01%at 60 min of incubation time compared to the cystone at 30.87 ± 0.74%. On the other hand,the Musa acuminate x balbiciana Colla cv "Awak Legor" methanolic bagasse extract (3D) had the highest inhibition percentage in the aggregation assay incubated at 360 min which was obtained at 58.78 ± 1.8%; 5.53% higher than the cystone (53.25%).The microscopic image showed a great reduction in the calcium oxalate (CaOx) crystals formation and the size of crystals in 2D and 3D extracts, respectively, as compared to negative control.

    CONCLUSIONS: The results obtained from this study suggest that the extracts are potential sources of alternative medicine for kidney stones disease.

  6. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
  7. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
  8. Tang HW, Abbasiliasi S, Murugan P, Tam YJ, Ng HS, Tan JS
    Biosci Biotechnol Biochem, 2020 Sep;84(9):1913-1920.
    PMID: 32448058 DOI: 10.1080/09168451.2020.1770572
    The aims of this study were to compare the effectiveness of different drying methods and to investigate the effects of adding a series of individual protectant such as skim milk, sucrose, maltodextrin, and corn starch for preserving Lactobacillus acidophilus FTDC 3081 cells during spray and freeze-drying and storage at different temperatures. Results showed a remarkable high survival rate of 70-80% immediately after spray- and freeze-drying in which the cell viability retained at the range of 109 to 1010 CFU/mL. After a month of storage, maltodextrin showed higher protective ability on both spray- and freeze-dried cells as compared to other protective agents at 4°C, 25°C, and 40°C. A complete loss in viability of spray-dried L. acidophilus FTDC 3081 was observed after a month at 40°C in the absence of protective agent.
  9. Ojukwu M, Tan JS, Easa AM
    J Food Sci, 2020 Sep;85(9):2720-2727.
    PMID: 32776580 DOI: 10.1111/1750-3841.15357
    A process for enhancing textural and cooking properties of fresh rice flour-soy protein isolate noodles (RNS) to match those of yellow alkaline noodles (YAN) was developed by incorporating microbial transglutaminase (RNS-MTG), glucono-δ-lactone (RNS-GDL), and both MTG and GDL into the RNS noodles (RNS-COM). The formation of γ-glutamyl-lysine bonds in RNS-COM and RNS-MTG was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Scanning electron microscope showed that compared to others, the structure of RNS-COM was denser, smoother with extensive apparent interconnectivity of aggregates. The optimum cooking time was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN (rice flour noodles); tensile strength was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN; and elasticity were in the order: YAN > RNS-COM > RNS-MTG, RNS-GDL > RN. Overall, RNS-COM showed similar textural and structural breakdown parameters as compared to those of YAN. Changes in microstructures and improvement of RNS-COM in certain properties were likely due to enhanced crosslinking of proteins attributed to MTG- and GDL-induced cold gelation of proteins at reduced pH value. It is possible to use the combination of MTG and GDL to improve textural and mechanical properties of RNS comparable to those of YAN. PRACTICAL APPLICATION: Combined MTG and GDL yield rice flour noodles with improved textural properties. The restructured rice flour noodles have the potential to replace yellow alkaline noodles.
  10. Norizan NABM, Halim M, Tan JS, Abbasiliasi S, Mat Sahri M, Othman F, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752106 DOI: 10.3390/molecules25153516
    Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
  11. Chin ZW, Arumugam K, Ashari SE, Faizal Wong FW, Tan JS, Ariff AB, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731437 DOI: 10.3390/molecules25153416
    The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.
  12. Hoe VC, Khairuddin A, Tan JS, Sharif MS, Azizan N, Hayati F
    BMC Surg, 2020 Jun 30;20(1):145.
    PMID: 32605613 DOI: 10.1186/s12893-020-00806-8
    BACKGROUND: Tuberculosis (TB) is classified according to the site of disease as pulmonary or extrapulmonary. Extrapulmonary TB is less common than its counterpart in which it can be found anywhere in the body including the liver. Similar to ampullary carcinoma, TB liver can manifest with jaundice and deranged liver function tests, particularly in the obstructed biliary systems.

    CASE PRESENTATION: A 43-year-old gentleman with locally advanced ampullary carcinoma was noticed to have multiple suspicious liver nodules intraoperatively during curative ampulla resection. The surgery was then abandoned after a biopsy. The histology was consistent with chronic granulomatous inflammation. He was then subjected to a Whipple pancreaticoduodenectomy procedure after initiation of anti-tubercular treatment. He recovered well with no evidence of tumour recurrence and worsening TB.

    CONCLUSIONS: A high index of suspicion and quick decision making can help to diagnose a possible extrapulmonary TB masquerading as a malignant disease in a patient with curative intention of ampullary carcinoma.

  13. Kee PE, Lan JC, Yim HS, Tan JS, Chow YH, Ng HS
    Appl Biochem Biotechnol, 2020 May;191(1):376-386.
    PMID: 31907777 DOI: 10.1007/s12010-019-03202-y
    Cytochrome c is a small water-soluble protein that is abundantly found in the mitochondrial intermembrane space of microorganism, plants and mammalians. Ionic liquids (ILs)-based aqueous two-phase electrophoresis system (ATPES) was introduced in this study to investigate the partition efficiency of cytochrome c to facilitate subsequent development of two-phase electrophoresis for the separation of cytochrome c from microbial fermentation. The 1-Hexyl-3-methylimidazolium bromide, (C6mim)Br and potassium citrate salt were selected as the phase-forming components. Effects of phase composition; position of electrodes; pH and addition of neutral salt on the partition efficiency of cytochrome c in the ATPES were evaluated. Highest partition coefficient (K = 179.12 ± 0.82) and yield of cytochrome c in top phase (YT = 99.63% ± 0.00) were recorded with IL/salt ATPES composed of 30% (w/w) (C6mim)Br and 20% (w/w) potassium citrate salt of pH 7 and 3.0% (w/w) NaCl addition with anode at the bottom phase and cathode at the top phase. The SDS-PAGE profile revealed that cytochrome c with a molecular weight of 12 kDa was preferably partitioned to the IL-rich top phase. Present findings suggested that the single-step ATPES is a potential separation approach for the recovery of cytochrome c from microbial fermentation. Graphical Abstract.
  14. Sulaiman S, Othman NQ, Tan JS, Lee YP
    Data Brief, 2020 Apr;29:105167.
    PMID: 32025548 DOI: 10.1016/j.dib.2020.105167
    Ganoderma boninense is a soil-borne Basidiomycete pathogenic fungus that eminent as the key causal of devastating disease in oil palm, named basal stem rot. Being a threat to sustainable palm oil production, it is essential to comprehend the fundamental view of this fungus. However, there is gap of information due to its limited number of genome sequence that is available for this pathogenic fungus. This implies the hitches in performing biological research to unravel the mechanism underlying the pathogen attack in oil palm. Therefore, here we report a dataset of draft genome of G. boninense that was sequenced using Illumina Hiseq 2000. The raw reads were deposited into NCBI database (SRX7136614 and SRX7136615) and can be accessed via Bioproject accession number PRJNA503786.
  15. Ng HS, Ng TC, Kee PE, Tan JS, Yim HS, Lan JC
    J Biosci Bioeng, 2020 Feb;129(2):237-241.
    PMID: 31629635 DOI: 10.1016/j.jbiosc.2019.08.013
    Aqueous biphasic flotation (ABF) integrates aqueous biphasic system (ABS) and solvent sublation for recovery of target biomolecules. The feasibility of the alcohol/salt ABF for exclusive partition of cytochrome c to one specific phase of the system was investigated. Aliphatic alcohols of different carbon chain length (ethanol, 1-propanol and 2-propanol) and salts (sulfate, phosphate and citrate) were used for the phase formation. The effects of phase composition, concentration of sample loading, pH, flotation time and flow rate of the system on the partition efficiency of cytochrome c were determined. Cytochrome c was exclusively partitioned to the alcohol-rich top phase of the ABF of 18% (w/w) ethanol and 26% (w/w) ammonium sulfate with pH 6 and 20% (w/w) of sample loading. Highest partition coefficient (K) of 6.85 ± 0.21 and yield (YT) of 99.40% ± 0.02 were obtained with optimum flotation rate of 10 mL/min and flow rate of 10 min.
  16. Ng ZJ, Zarin MA, Lee CK, Phapugrangkul P, Tan JS
    Arch Oral Biol, 2020 Feb;110:104617.
    PMID: 31794906 DOI: 10.1016/j.archoralbio.2019.104617
    Streptococcus mutans and Candida albicans are the main oral pathogens which contribute to dental caries that affects all ages of human being.

    OBJECTIVES: This study focuses on the potential of crude cell free supernatant (CCFS) from lactic acid bacteria (LAB) to inhibit of the growth of S. mutans UKMCC 1019.

    DESIGN: A total of 61 CCFS from LAB strains were screened for their inhibitory ability against S. mutans UKMCC 1019 by broth microdilution method. The selected LAB with highest antimicrobial activity was identified and its CCFS was characterized for pH stability, temperature tolerance, enzyme sensitivity, metabolism of carbohydrates, enzymatic activities and antimicrobial activity against S. mutans UKMCC 1019 and C. albicans UKMCC 3001 by well diffusion assay. The effect of CCFS on cell structure of S. mutans UKMCC 1019 was observed under transmission electron microscopy (TEM).

    RESULTS: The CCFS from isolate CC2 from Kimchi showed the highest inhibition against S. mutans UKMCC 1019, which was 76.46 % or 4406.08 mm2/mL and it was identified to be most closely related to Enterococcus faecium DSM 20477 based on 16 s rRNA sequencing. The CCFS of E. faecium DSM 20477 had high tolerance to acidic and alkaline environment as well as high temperature. It also shows high antifungal activities against C. albicans UKMCC 3001 with 2362.56 mm2/mL. Under TEM, the cell walls and the cytoplasm membrane of S. mutans UKMCC 1019 were disrupted by the antimicrobial substance, causing cell lysis.

    CONCLUSIONS: Hence, the CCFS from E. faecium DSM 20477 is a potential bacteriocin in future for the treatment of dental caries.

  17. Khairuddin A, Ong GH, Tan JS, Johan S, Hoe VC, Sharif MS, et al.
    Int J Surg Case Rep, 2020;66:104-106.
    PMID: 31830742 DOI: 10.1016/j.ijscr.2019.11.055
    INTRODUCTION: Laparoscopic liver resection is currently performed as a therapeutic modality in hepatocellular carcinoma (HCC). In an emergency setting such as bleeding or rupture, however it has not been well documented.

    PRESENTATION OF CASE: We describe a 55-year-old lady who presented to the emergency department with epigastric pain and symptoms of anaemia for one day duration. She was normotensive but tachycardic. Blood investigations revealed haemoglobin level of 6.5 g/dL and serum alpha-fetoprotein of 3136 g/dL. Contrast enhanced computed tomography scan revealed ruptured HCC of segment 2 and 3. She underwent emergency laparoscopic resection of the ruptured HCC. The postoperative recovery was uneventful and she was discharged well on postoperative day 7. Histology confirmed a 10 cm ruptured HCC with 3 mm tumour-free resection margin.

    DISCUSSION: Ruptured HCC is associated with a high mortality rate of 25-75 %. Traditional treatment involves initial stabilization and hemostasis through transarterial embolization followed by staged hepatic resection. However, laparoscopic liver resection has been shown to be superior than open surgery in terms of postoperative outcomes.

    CONCLUSION: Laparoscopic resection of bleeding HCC is achievable and can be considered in the treatment algorithm of selected patients.

  18. Othman NQ, Sulaiman S, Lee YP, Tan JS
    Data Brief, 2019 Aug;25:104288.
    PMID: 31453289 DOI: 10.1016/j.dib.2019.104288
    To date, Ganoderma boninense is known to be the causal agent of basal stem rot (BSR) disease in oil palm (Elaeis guineensis). This disease causes rotting in the roots, basal and upper stem of oil palm. Infection causes progressive destruction of the basal tissues at the oil palm trunk and internal dry rotting, particularly at the intersection between the bole and trunk. Molecular responses of oil palm during infection are not well study although this information is crucial to strategize effective measures to control or eliminate BSR. Here we report three sets of transcriptome data from samples of near-rot section of basal stem tissue of oil palm tree infected with G. boninense (IPIT), healthy section of basal stem tissue of the same G. boninense infected palm (IPHT) and the healthy section of basal stem tissue of the healthy palm (HPHT). The raw reads were deposited into NCBI database and can be accessed via BioProject accession number PRJNA530030.
  19. Bashokouh F, Abbasiliasi S, Tan JS
    Cytotechnology, 2019 Jul 16;71(4):849-860.
    PMID: 31312930 DOI: 10.1007/s10616-019-00330-5
    Monoclonal antibody (McAb) has been established as one of the most successful therapeutic strategies for the treatment of cancer. M1A2 (McAb) as a new monoclonal antibody was designed to recognize heat shock protein (HSP60), but its optimum production condition has not been studied. In this study, the cell culture conditions for both Roswell Park Memorial Institute Medium (RPMI 1640) and Dulbecco's Modified Eagle Medium (DMEM) were optimized using artificial neural network (ANN) analysis to obtain maximum production of IgM McAb by hybridoma M1A2 cells. By using a central composite design, an experimental matrix with cultivation parameters of incubation time, temperature and fetal bovine serum (FBS) concentration on IgM McAb production was designed. The results was analysed by ANN network with different learning algorithms. From the analysis, batch back propagation (BBP) trained ANN composed of eight hidden nodes using a hyperbolic tangent sigmoid transfer function was capable to provide the highest McAb production for both RPMI and DMEM media. Under optimum conditions of 12.5% of FBS, at 33 °C after 3(1/2) days of incubation, maximum McAb production (1132.69 μg/ml) in DMEM was achieved. With PRMI 1640 medium, maximum McAb production (1105.12 μg/ml) was achieved at optimum conditions of 11% of FBS, at 33 °C after 4 days of incubation. The results of this study will provide information for optimum culture conditions of M1A2 McAb production in both DMEM and RPMI 1640 media and also give some clues for the other hybridoma excreting antibodies in the development of in vitro cell culture.
  20. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links