Displaying publications 21 - 40 of 59 in total

Abstract:
Sort:
  1. Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, et al.
    Ceram Int, 2021 Feb 01;47(3):2917-2948.
    PMID: 32994658 DOI: 10.1016/j.ceramint.2020.09.177
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
  2. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Acharya RU, Yeong CH
    World J Exp Med, 2020 Mar 30;10(2):10-25.
    PMID: 32266125 DOI: 10.5493/wjem.v10.i2.10
    BACKGROUND: Liver cancer is the 6th most common cancer in the world and the 4th most common death from cancer worldwide. Hepatic radioembolization is a minimally invasive treatment involving intraarterial administration of radioembolic microspheres.

    AIM: To develop a neutron-activated, biodegradable and theranostics samarium-153 acetylacetonate (153SmAcAc)-poly-L-lactic acid (PLLA) microsphere for intraarterial radioembolization of hepatic tumors.

    METHODS: Microspheres with different concentrations of 152SmAcAc (i.e., 100%, 150%, 175% and 200% w/w) were prepared by solvent evaporation method. The microspheres were then activated using a nuclear reactor in a neutron flux of 2 × 1012 n/cm2/s1, converting 152Sm to Samarium-153 (153Sm) via152Sm (n, γ) 153Sm reaction. The SmAcAc-PLLA microspheres before and after neutron activation were characterized using scanning electron microscope, energy dispersive X-ray spectroscopy, particle size analysis, Fourier transform infrared spectroscopy, thermo-gravimetric analysis and gamma spectroscopy. The in-vitro radiolabeling efficiency was also tested in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    RESULTS: The SmAcAc-PLLA microspheres with different SmAcAc contents remained spherical before and after neutron activation. The mean diameter of the microspheres was about 35 µm. Specific activity achieved for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc after 3 h neutron activation were 1.7 ± 0.05, 2.5 ± 0.05, 2.7 ± 0.07, and 2.8 ± 0.09 GBq/g, respectively. The activity of per microspheres were determined as 48.36 ± 1.33, 74.10 ± 1.65, 97.87 ± 2.48, and 109.83 ± 3.71 Bq for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc. The energy dispersive X-ray and gamma spectrometry showed that no elemental and radioactive impurities present in the microspheres after neutron activation. Retention efficiency of 153Sm in the SmAcAc-PLLA microspheres was excellent (approximately 99%) in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    CONCLUSION: The 153SmAcAc-PLLA microsphere is potentially useful for hepatic radioembolization due to their biodegradability, favorable physicochemical characteristics and excellent radiolabeling efficiency. The synthesis of the formulation does not involve ionizing radiation and hence reducing the complication and cost of production.

  3. Nasiri-Tabrizi B, Basirun WJ, Walvekar R, Yeong CH, Phang SW
    Biomater Adv, 2024 Apr 16;161:213854.
    PMID: 38703541 DOI: 10.1016/j.bioadv.2024.213854
    This review delves into the utilization of intermetallic alloys (IMAs) as advanced biomaterials for medical implants, scrutinizing their conceptual framework, fabrication challenges, and diverse manufacturing techniques such as casting, powder metallurgy, and additive manufacturing. Manufacturing techniques such as casting, powder metallurgy, additive manufacturing, and injection molding are discussed, with specific emphasis on achieving optimal grain sizes, surface roughness, and mechanical properties. Post-treatment methods aimed at refining surface quality, dimensional precision, and mechanical properties of IMAs are explored, including the use of heat treatments to enhance biocompatibility and corrosion resistance. The review presents an in-depth examination of IMAs-based implantable biomaterials, covering lab-scale developments and commercial-scale implants. Specific IMAs such as Nickel Titanium, Titanium Aluminides, Iron Aluminides, Magnesium-based IMAs, Zirconium-based IMAs, and High-entropy alloys (HEAs) are highlighted, with detailed discussions on their mechanical properties, including strength, elastic modulus, and corrosion resistance. Future directions are outlined, with an emphasis on the anticipated growth in the orthopedic devices market and the role of IMAs in meeting this demand. The potential of porous IMAs in orthopedics is explored, with emphasis on achieving optimal pore sizes and distributions for enhanced osseointegration. The review concludes by highlighting the ongoing need for research and development efforts in IMAs technologies, including advancements in design and fabrication techniques.
  4. Allan A, Kealley C, Squelch A, Wong YH, Yeong CH, Sun Z
    Quant Imaging Med Surg, 2019 Jan;9(1):86-93.
    PMID: 30788249 DOI: 10.21037/qims.2018.12.01
    BACKGROUND: 3D printing has shown great promise in medical applications, with increasing reports in liver diseases. However, research on 3D printing in biliary disease is limited with lack of studies on validation of model accuracy. In this study, we presented our experience of creating a realistic 3D printed model of biliary ducts with congenital cyst. Measurements of anatomical landmarks were compared at different stages of model generation to determine dimensional accuracy.

    METHODS: Contrast-enhanced computed tomography (CT) images of a patient diagnosed with congenital cyst in the common bile duct with dilated hepatic ducts were used to create the 3D printed model. The 3D printed model was scanned on a 64-slice CT scanner using the similar abdominal CT protocol. Measurements of anatomical structures including common hepatic duct (CHD), right hepatic duct (RHD), left hepatic duct (LHD) and the cyst at left to right and anterior to posterior dimensions were performed and compared between original CT images, the standard tessellation language (STL) image and CT images of the 3D model.

    RESULTS: The 3D printing model was successfully generated with replication of biliary ducts and cyst. Significant differences in measurements of these landmarks were found between the STL and the original CT images, and the CT images of the 3D printed model and the original CT images (P<0.05). Measurements of the RHD and LHD diameters from the original CT images were significantly larger than those from the CT images of 3D model or STL file (P<0.05), while measurements of the CHD diameters were significantly smaller than those of the other two datasets (P<0.05). No significant differences were reached in measurements of the CHD, RHD, LHD and the biliary cyst between CT images of the 3D printed model and STL file (P=0.08-0.98).

    CONCLUSIONS: This study shows our experience in producing a realistic 3D printed model of biliary ducts and biliary cyst. The model was found to replicate anatomical structures and cyst with high accuracy between the STL file and the CT images of the 3D model. Large discrepancy in dimensional measurements was noted between the original CT and STL file images, and the original CT and CT images of the 3D model, highlighting the necessity of further research with inclusion of more cases of biliary disease to validate accuracy of 3D printed biliary models.

  5. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Perkins AC, Yeong CH
    Nucl Med Commun, 2023 Apr 01;44(4):227-243.
    PMID: 36808108 DOI: 10.1097/MNM.0000000000001665
    Personalised cancer treatment is of growing importance and can be achieved via targeted radionuclide therapy. Radionuclides with theranostic properties are proving to be clinically effective and are widely used because diagnostic imaging and therapy can be accomplished using a single formulation that avoids additional procedures and unnecessary radiation burden to the patient. For diagnostic imaging, single photon emission computed tomography (SPECT) or positron emission tomography (PET) is used to obtain functional information noninvasively by detecting the gamma (γ) rays emitted from the radionuclide. For therapeutics, high linear energy transfer (LET) radiations such as alpha (α), beta (β - ) or Auger electrons are used to kill cancerous cells in close proximity, whereas sparing the normal tissues surrounding the malignant tumour cells. One of the most important factors that lead to the sustainable development of nuclear medicine is the availability of functional radiopharmaceuticals. Nuclear research reactors play a vital role in the production of medical radionuclides for incorporation into clinical radiopharmaceuticals. The disruption of medical radionuclide supplies in recent years has highlighted the importance of ongoing research reactor operation. This article reviews the current status of operational nuclear research reactors in the Asia-Pacific region that have the potential for medical radionuclide production. It also discusses the different types of nuclear research reactors, their operating power, and the effects of thermal neutron flux in producing desirable radionuclides with high specific activity for clinical applications.
  6. Tan SK, Yeong CH, Ng KH, Abdul Aziz YF, Sun Z
    PLoS One, 2016;11(8):e0161543.
    PMID: 27552224 DOI: 10.1371/journal.pone.0161543
    OBJECTIVES: This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE).

    MATERIALS AND METHODS: Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region.

    RESULTS: Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor.

    CONCLUSION: The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners.

  7. Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, et al.
    Nucl Med Biol, 2020;90-91:55-68.
    PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005
    Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
  8. Tuncer I, Barua PD, Dogan S, Baygin M, Tuncer T, Tan RS, et al.
    Inform Med Unlocked, 2023;36:101158.
    PMID: 36618887 DOI: 10.1016/j.imu.2022.101158
    BACKGROUND: Chest computed tomography (CT) has a high sensitivity for detecting COVID-19 lung involvement and is widely used for diagnosis and disease monitoring. We proposed a new image classification model, swin-textural, that combined swin-based patch division with textual feature extraction for automated diagnosis of COVID-19 on chest CT images. The main objective of this work is to evaluate the performance of the swin architecture in feature engineering.

    MATERIAL AND METHOD: We used a public dataset comprising 2167, 1247, and 757 (total 4171) transverse chest CT images belonging to 80, 80, and 50 (total 210) subjects with COVID-19, other non-COVID lung conditions, and normal lung findings. In our model, resized 420 × 420 input images were divided using uniform square patches of incremental dimensions, which yielded ten feature extraction layers. At each layer, local binary pattern and local phase quantization operations extracted textural features from individual patches as well as the undivided input image. Iterative neighborhood component analysis was used to select the most informative set of features to form ten selected feature vectors and also used to select the 11th vector from among the top selected feature vectors with accuracy >97.5%. The downstream kNN classifier calculated 11 prediction vectors. From these, iterative hard majority voting generated another nine voted prediction vectors. Finally, the best result among the twenty was determined using a greedy algorithm.

    RESULTS: Swin-textural attained 98.71% three-class classification accuracy, outperforming published deep learning models trained on the same dataset. The model has linear time complexity.

    CONCLUSIONS: Our handcrafted computationally lightweight swin-textural model can detect COVID-19 accurately on chest CT images with low misclassification rates. The model can be implemented in hospitals for efficient automated screening of COVID-19 on chest CT images. Moreover, findings demonstrate that our presented swin-textural is a self-organized, highly accurate, and lightweight image classification model and is better than the compared deep learning models for this dataset.

  9. Abdullah BJ, Yeong CH, Goh KL, Yoong BK, Ho GF, Yim CC, et al.
    Eur Radiol, 2015 Jan;25(1):246-57.
    PMID: 25189152 DOI: 10.1007/s00330-014-3391-7
    OBJECTIVE: This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system.

    METHODS: Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance.

    RESULTS: Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method.

    CONCLUSION: This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients.

    KEY POINTS: • Clinical experience on liver thermal ablation using CT-guided robotic system is reported. • The technical success, radiation dose, safety and performance level were assessed. • Thermal ablations were successfully performed, with an average performance score of 4.4/5.0. • Robotic-assisted ablation can potentially increase capabilities of less skilled interventional radiologists. • Cost-effectiveness needs to be proven in further studies.

  10. Abdullah BJ, Yeong CH, Goh KL, Yoong BK, Ho GF, Yim CC, et al.
    Eur Radiol, 2014 Jan;24(1):79-85.
    PMID: 23928933 DOI: 10.1007/s00330-013-2979-7
    OBJECTIVE: Computed tomography (CT)-compatible robots, both commercial and research-based, have been developed with the intention of increasing the accuracy of needle placement and potentially improving the outcomes of therapies in addition to reducing clinical staff and patient exposure to radiation during CT fluoroscopy. In the case of highly inaccessible lesions that require multiple plane angulations, robotically assisted needles may improve biopsy access and targeted drug delivery therapy by avoidance of the straight line path of normal linear needles.

    METHODS: We report our preliminary experience of performing radiofrequency ablation of the liver using a robotic-assisted CT guidance system on 11 patients (17 lesions).

    RESULTS/CONCLUSION: Robotic-assisted planning and needle placement appears to have high accuracy, is technically easier than the non-robotic-assisted procedure, and involves a significantly lower radiation dose to both patient and support staff.

    KEY POINTS: • An early experience of robotic-assisted radiofrequency ablation is reported • Robotic-assisted RFA improves accuracy of hepatic lesion targeting • Robotic-assisted RFA makes the procedure technically easier with significant lower radiation dose.

  11. Yeong CH, Abdullah BJ, Ng KH, Chung LY, Goh KL, Sarji SA, et al.
    Appl Radiat Isot, 2012 Mar;70(3):450-5.
    PMID: 22178699 DOI: 10.1016/j.apradiso.2011.11.056
    We produced an enteric-coated gelatine capsule containing neutron-activated (153)Sm-labelled resin beads for use in gastrointestinal motility studies. In vitro test in simulated gastrointestinal environment and in vivo study on volunteers were performed. Scintigraphic images were acquired from ten volunteers over 24h while blood and urine samples were collected to monitor the presence of (153)Sm. All the capsules remained intact in stomach. This proved to be a safe and practical oral capsule formulation for whole gut transit scintigraphy.
  12. Yeong CH, Abdullah BJ, Ng KH, Chung LY, Goh KL, Sarji SA, et al.
    Nucl Med Commun, 2011 Dec;32(12):1256-60.
    PMID: 21934547 DOI: 10.1097/MNM.0b013e32834b3ac8
    Nuclear medicine techniques are well established for the investigation of gastrointestinal (GI) motility and transit. Ion-exchange resins radiolabelled with ⁹⁹mTc and ¹¹¹In are widely used as nonabsorbable radiopharmaceutical markers, with ¹¹¹In being preferred for whole-gut transit studies. This radionuclide, however, is not produced in many countries and may be expensive when obtained through international shipment. This study describes the use of neutron-activated ¹⁵³Sm-resin as an alternative tracer for use in GI scintigraphic investigation. A measure of 50 mg of stable samarium-152 chloride (¹⁵²SmCl₃) was incorporated into 100 mg of cation-exchange resin and irradiated in a neutron flux of 1 × 10¹³ cm⁻² s⁻¹ for 100 s to achieve an activity of 5 MBq after 66 h. Aliquots of ¹¹¹In-radiolabelled resin (5 MBq) were prepared for comparison of labelling and stability. Radiolabelling efficiencies were obtained by washing resin with distilled water, and the activity lost was measured. The radiolabelled resins were immersed in simulated gastric and intestinal fluid environments, and the retention of ¹⁵³Sm³⁺ and ¹¹¹In³⁺ was measured over a 24 h period. At 66 h after production, 91.15 ± 12.42% of ¹⁵³Sm was bound to the resin after washing in distilled water, whereas radiolabelling with ¹¹¹In achieved 99.96 ± 0.02% efficiency. Both radiolabelled resins demonstrated almost 100% stability in simulated intestinal fluid and >90% stability in artificial gastric juice over 24 h. The performance of neutron-activated ¹⁵³Sm-resin is similar to that of ¹¹¹In-resin and can be used as an alternative tracer for GI transit studies when In is not available.
  13. Hashikin NA, Yeong CH, Abdullah BJ, Ng KH, Chung LY, Dahalan R, et al.
    PLoS One, 2015;10(9):e0138106.
    PMID: 26382059 DOI: 10.1371/journal.pone.0138106
    Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy.
  14. Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, et al.
    J Med Syst, 2019 Aug 09;43(9):302.
    PMID: 31396722 DOI: 10.1007/s10916-019-1428-9
    The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
  15. Lau I, Wong YH, Yeong CH, Abdul Aziz YF, Md Sari NA, Hashim SA, et al.
    Quant Imaging Med Surg, 2019 Jan;9(1):107-114.
    PMID: 30788252 DOI: 10.21037/qims.2019.01.02
    Current visualization techniques of complex congenital heart disease (CHD) are unable to provide comprehensive visualization of the anomalous cardiac anatomy as the medical datasets can essentially only be viewed from a flat, two-dimensional (2D) screen. Three-dimensional (3D) printing has therefore been used to replicate patient-specific hearts in 3D views based on medical imaging datasets. This technique has been shown to have a positive impact on the preoperative planning of corrective surgery, patient-doctor communication, and the learning experience of medical students. However, 3D printing is often costly, and this impedes the routine application of this technology in clinical practice. This technical note aims to investigate whether reducing 3D printing costs can have any impact on the clinical value of the 3D-printed heart models. Low-cost and a high-cost 3D-printed models based on a selected case of CHD were generated with materials of differing cost. Quantitative assessment of dimensional accuracy of the cardiac anatomy and pathology was compared between the 3D-printed models and the original cardiac computed tomography (CT) images with excellent correlation (r=0.99). Qualitative evaluation of model usefulness showed no difference between the two models in medical applications.
  16. Tan SK, Ng KH, Yeong CH, Raja Aman RRA, Mohamed Sani F, Abdul Aziz YF, et al.
    Quant Imaging Med Surg, 2019 Apr;9(4):552-564.
    PMID: 31143647 DOI: 10.21037/qims.2019.03.13
    Background: High delivery rate is an important factor in optimizing contrast medium administration in coronary computed tomography angiography (CCTA). A personalized contrast volume calculation algorithm incorporating high iodine delivery rate (IDR) can reduce total iodine dose (TID) and produce optimal vessel contrast enhancement (VCE) in low tube voltage CCTA. In this study, we developed and validated an algorithm for calculating the volume of contrast medium delivered at a high rate for patients undergoing retrospectively ECG-gated CCTA with low tube voltage protocol.

    Methods: The algorithm for an IDR of 2.22 gI·s-1 was developed based on the relationship between VCE and contrast volume in 141 patients; test bolus parameters and characteristics in 75 patients; and, tube voltage in a phantom study. The algorithm was retrospectively tested in 45 patients who underwent retrospectively ECG-gated CCTA with a 100 kVp protocol. Image quality, TID and radiation dose exposure were compared with those produced using the 120 kVp and routine contrast protocols.

    Results: Age, sex, body surface area (BSA) and peak contrast enhancement (PCE) were significant predictors for VCE (P<0.05). A strong linear correlation was observed between VCE and contrast volume (r=0.97, P<0.05). The 100-to-120 kVp contrast enhancement conversion factor (Ec) was calculated at 0.81. Optimal VCE (250 to 450 HU) and diagnostic image quality were obtained with significant reductions in TID (32.1%) and radiation dose (38.5%) when using 100 kVp and personalized contrast volume calculation algorithm compared with 120 kVp and routine contrast protocols (P<0.05).

    Conclusions: The proposed algorithm could significantly reduce TID and radiation exposure while maintaining optimal VCE and image quality in CCTA with 100 kVp protocol.

  17. Ismail UN, Azlan CA, Khairullah S, Azman RR, Omar NF, Md Shah MN, et al.
    J Magn Reson Imaging, 2021 01;53(1):190-198.
    PMID: 33237616 DOI: 10.1002/jmri.27294
    BACKGROUND: β-thalassemia is a genetic disease that causes abnormal production of red blood cells (ineffective erythropoiesis, IE). IE is a condition known to change bone marrow composition.

    PURPOSE: To evaluate the effect of IE on the marrow fat content and fat unsaturation levels in the proximal femur using 1 H-MRS.

    STUDY TYPE: Prospective.

    SUBJECTS: Twenty-three subjects were included in this study, seven control and 16 β-thalassemia subjects.

    FIELD STRENGTH/SEQUENCE: 3.0T; stimulated echo acquisition Mode (STEAM); magnetic resonance spectroscopy (MRS) sequence.

    ASSESSMENT: Multiecho MRS scans were performed in four regions of the proximal left femur of each subject, that is, diaphysis, femoral neck, femoral head, and greater trochanter. The examined regions were grouped into red (diaphysis and femoral neck) and yellow marrow regions (femoral head and greater trochanter).

    STATISTICAL TESTS: The Jonckheere-Terpstra test was used to evaluate the impact of increasing disease severity on bone marrow fat fraction (BMFF), marrow conversion index, and fat unsaturation index (UI). Pairwise comparison analysis was performed when a significant trend (P 

  18. Hashikin NAA, Yeong CH, Guatelli S, Abdullah BJJ, Ng KH, Malaroda A, et al.
    Phys Med Biol, 2017 Aug 22;62(18):7342-7356.
    PMID: 28686171 DOI: 10.1088/1361-6560/aa7e5b
    We aimed to investigate the validity of the partition model (PM) in estimating the absorbed doses to liver tumour ([Formula: see text]), normal liver tissue ([Formula: see text]) and lungs ([Formula: see text]), when cross-fire irradiations between these compartments are being considered. MIRD-5 phantom incorporated with various treatment parameters, i.e. tumour involvement (TI), tumour-to-normal liver uptake ratio (T/N) and lung shunting (LS), were simulated using the Geant4 Monte Carlo (MC) toolkit. 108track histories were generated for each combination of the three parameters to obtain the absorbed dose per activity uptake in each compartment ([Formula: see text], [Formula: see text], and [Formula: see text]). The administered activities, A were estimated using PM, so as to achieve either limiting doses to normal liver, [Formula: see text] or lungs, [Formula: see text] (70 or 30 Gy, respectively). Using these administered activities, the activity uptake in each compartment ([Formula: see text], [Formula: see text], and [Formula: see text]) was estimated and multiplied with the absorbed dose per activity uptake attained using the MC simulations, to obtain the actual dose received by each compartment. PM overestimated [Formula: see text] by 11.7% in all cases, due to the escaped particles from the lungs. [Formula: see text] and [Formula: see text] by MC were largely affected by T/N, which were not considered by PM due to cross-fire exclusion at the tumour-normal liver boundary. These have resulted in the overestimation of [Formula: see text] by up to 8% and underestimation of [Formula: see text] by as high as  -78%, by PM. When [Formula: see text] was estimated via PM, the MC simulations showed significantly higher [Formula: see text] for cases with higher T/N, and LS  ⩽  10%. All [Formula: see text] and [Formula: see text] by MC were overestimated by PM, thus [Formula: see text] were never exceeded. PM leads to inaccurate dose estimations due to the exclusion of cross-fire irradiation, i.e. between the tumour and normal liver tissue. Caution should be taken for cases with higher TI and T/N, and lower LS, as they contribute to major underestimation of [Formula: see text]. For [Formula: see text], a different correction factor for dose calculation may be used for improved accuracy.
  19. Dabbagh A, Hedayatnasab Z, Karimian H, Sarraf M, Yeong CH, Madaah Hosseini HR, et al.
    Int J Hyperthermia, 2019;36(1):104-114.
    PMID: 30428737 DOI: 10.1080/02656736.2018.1536809
    PURPOSE: Although magnetite nanoparticles (MNPs) are promising agents for hyperthermia therapy, insufficient drug encapsulation efficacies inhibit their application as nanocarriers in the targeted drug delivery systems. In this study, porous magnetite nanoparticles (PMNPs) were synthesized and coated with a thermosensitive polymeric shell to obtain a synergistic effect of hyperthermia and chemotherapy.

    MATERIALS AND METHODS: PMNPs were produced using cetyltrimethyl ammonium bromide template and then coated by a polyethylene glycol layer with molecular weight of 1500 Da (PEG1500) and phase transition temperature of 48 ± 2 °C to endow a thermosensitive behavior. The profile of drug release from the nanostructure was studied at various hyperthermia conditions generated by waterbath, magnetic resonance-guided focused ultrasound (MRgFUS), and alternating magnetic field (AMF). The in vitro cytotoxicity and hyperthermia efficacy of the doxorubicin-loaded nanoparticles (DOX-PEG1500-PMNPs) were assessed using human lung adenocarcinoma (A549) cells.

    RESULTS: Heat treatment of DOX-PEG1500-PMNPs containing 235 ± 26 mg·g-1 DOX at 48 °C by waterbath, MRgFUS, and AMF, respectively led to 71 ± 4%, 48 ± 3%, and 74 ± 5% drug release. Hyperthermia treatment of the A549 cells using DOX-PEG1500-PMNPs led to 77% decrease in the cell viability due to the synergistic effects of magnetic hyperthermia and chemotherapy.

    CONCLUSION: The large pores generated in the PMNPs structure could provide a sufficient space for encapsulation of the chemotherapeutics as well as fast drug encapsulation and release kinetics, which together with thermosensitive characteristics of the PEG1500 shell, make DOX-PEG1500-PMNPs promising adjuvants to the magnetic hyperthermia modality.

  20. Tan D, Mohamad NA, Wong YH, Yeong CH, Cheah PL, Sulaiman N, et al.
    Int J Hyperthermia, 2019;36(1):554-561.
    PMID: 31132888 DOI: 10.1080/02656736.2019.1610800
    Purpose: This study aimed to evaluate the effects of various computed tomography (CT) acquisition parameters and metal artifacts on CT number measurement for CT thermometry during CT-guided thermal ablation. Methods: The effects of tube voltage (100-140 kVp), tube current (20-250 mAs), pitch (0.6-1.5) and gantry rotation time (0.5, 1.0 s) as well as metal artifacts from a radiofrequency ablation (RFA) needle on CT number were evaluated using liver tissue equivalent polyacrylamide (PAA) phantom. The correlation between CT number and temperature from 37 to 80 °C was studied on PAA phantom using optimum CT acquisition parameters. Results: No statistical significant difference (p > 0.05) was found on CT numbers under the variation of different acquisition parameters for the same temperature setting. On the other hand, the RFA needle has induced metal artifacts on the CT images of up to 8 mm. The CT numbers decreased linearly when the phantom temperature increased from 37 to 80 °C. A linear regression analysis on the CT numbers and temperature suggested that the CT thermal sensitivity was -0.521 ± 0.061 HU/°C (R2 = 0.998). Conclusion: CT thermometry is feasible for temperature assessment during RFA with the current CT technology, which produced a high CT number reproducibility and stable measurement at different CT acquisition parameters. Despite being affected by metal artifacts, the CT-based thermometry could be further developed as a tissue temperature monitoring tool during CT-guided thermal ablation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links