Displaying publications 21 - 40 of 209 in total

Abstract:
Sort:
  1. Tiong KH, Mah LY, Leong CO
    Apoptosis, 2013 Dec;18(12):1447-68.
    PMID: 23900974 DOI: 10.1007/s10495-013-0886-7
    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  2. Armania N, Yazan LS, Ismail IS, Foo JB, Tor YS, Ishak N, et al.
    Molecules, 2013;18(11):13320-39.
    PMID: 24172241 DOI: 10.3390/molecules181113320
    The present research was designed to evaluate the anticancer properties of Dillenia suffruticosa extract. Our focus was on the mode of cell death and cell cycle arrest induced in breast cancer cells by the active fractions (designated as D/F4, D/F5 and EA/P2) derived from chromatographic fractionation of D. suffruticosa extracts. The results showed that the active fractions are more cytotoxic towards MCF-7 (estrogen positive breast cancer cells) and MDA-MB-231 (estrogen negative breast cancer cells) as compared to other selected cancer cell lines that included HeLa, A459 and CaOV3. The induction of cell death through apoptosis by the active fractions on the breast cancer cells was confirmed by Annexin V-FITC and PI staining. Cell cycle analysis revealed that D/F4 and EA/P2 induced G2/M phase cell cycle arrest in MCF-7 cells. On the other hand, MDA-MB-231 cells treated with D/F4 and D/F5 accumulated in the sub-G1 phase without cell cycle arrest, suggesting the induction of cell death through apoptosis. The data suggest that the active fractions of D. suffruticosa extract eliminated breast cancer cells through induction of apoptosis and cell cycle arrest. The reason why MCF-7 was more sensitive towards the treatment than MDA-MB-231 remains unclear. This warrants further work, especially on the role of hormones in response towards cytotoxic agents. In addition, more studies on the mechanisms underlying the induction of apoptosis and cell cycle arrest by the plant extract also need to be carried out.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  3. Mae SH, Sofia M, Bolhuis RL, Nooter K, Oostrum RG, Subagus W, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:24-5.
    PMID: 19024965
    The leaves of Nerium indicum Mill. have been utilized traditionally to cure cancer. By Bioassay (BST) guided isolation method, six compounds were isolated from the CHCl3 extract of the leaves. Selectivity of these compounds (in 0.6-12,500 ng/ml) was tested on various human cancer (MCF7, EVSA-T, T47D, H226, IGROV, A498, WIDR, M19, HeLa) and normal (Vero) cells in vitro. Doxorubicin and cysplatin were used as positive controls. The result indicated that NiO2D (5alpha-oleandrin) possessed the best cytotoxic effect on HeLa cells (IC50, 8.38 x10(-6) mM) and NiO2C (16, 17-dehidrodeasetil-5alpha-oleandrin) on A498 cells (IC50, 1.43 x 10(-6) mM). Those two compounds were not cytotoxic to normal cell.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  4. Zulkifli MM, Ibrahim R, Ali AM, Aini I, Jaafar H, Hilda SS, et al.
    Neurol Res, 2009 Feb;31(1):3-10.
    PMID: 18937888 DOI: 10.1179/174313208X325218
    Newcastle disease virus (NDV) is a virus of paramyxovirus family and lately has been studied for the treatment of cancer in human. In this study, we successfully determined the oncolysis potential of NDV vaccine, V4UPM tested on the human glioblastoma multiform cell line (DBTRG.05MG) and human glioblastoma astrocytoma cell line (U-87MG) in vitro and in vivo. The V4UPM strain is a modified V4 strain developed as thermostable feed pellet vaccine for poultry.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  5. Khan FA, Shukla AN
    J Cancer Res Ther, 2007 11 14;2(4):196-9.
    PMID: 17998703
    Gastric cancer is one of the most common cancers and most frequent causes of cancer-related deaths in the world. The overall survival rate is 15-20%. Although the incidence is declining, its prognosis remains poor. The etiological factors and pathogenesis of gastric cancer are not yet fully understood. The integrated research in molecular pathology clarified the details of genetic and epigenetic abnormalities of cancer-related genes in the course of development and progression of gastric cancer. Although epidemiological evidences indicate that environmental factors play a major role in the carcinogenesis, the role of immunological, genetic and immunogenetic factors are thought to contribute to etiopathogenesis of gastric carcinoma. In addition to better understanding of pathogenesis of gastric cancer, the incidence, diagnostic studies and the therapeutic options have also undergone important changes in the last decade. There is ongoing debate regarding the role of adjuvant treatment. In advanced disease, palliation of symptoms, rather than cure, is the primary goal of patient management. Several combination therapies have been developed and have been examined in phase III trials; however, in most cases, they have failed to demonstrate a survival advantage over the reference arm. This review summarizes the newer concepts of molecular biology on gastric carcinogenesis and the new important recommendations for the management of patient with gastric carcinoma.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  6. Yousaf A, Hamid SA, Bunnori NM, Ishola AA
    Drug Des Devel Ther, 2015;9:2831-8.
    PMID: 26082613 DOI: 10.2147/DDDT.S83213
    Research on the therapeutic applications of calixarene derivatives is an emerging area of interest. The anticancer activity of various functionalized calixarenes has been reported by several research groups. Due to their superior geometric shape, calixarenes can accommodate drug molecules by forming inclusion complexes. Controlled release of anticancer drugs by calixarenes might help in targeted chemotherapy. This review summarizes the anticancer potential of the calixarenes and their drug loading properties. The potential use of calixarenes in chemoradiotherapy is also highlighted in brief.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  7. Joseph JK, Lim AKH
    Med J Malaysia, 1998 Mar;53(1):37-41.
    PMID: 10968135
    A pilot study of Formestane or 4-Hydroxyandrostenedione (Lentaron), a new endocrine agent, was conducted on 18 postmenopausal patients with locally advanced and metastatic breast cancer. 16 patients were evaluable for response and objective responses were seen in 4 patients (25%). Stabilisation of disease was seen in 5 patients (32%). Out of 17 patients evaluable for toxicity, 3 (18%) reported adverse effects including hot flushes, lethargy and myalgia. Adverse effects were mild, transient and no patient required discontinuation of drug. Our study confirms that Formestane is a well tolerated endocrine agent with low toxicity and reasonable efficacy in postmenopausal patients with locally advanced and metastatic breast cancer.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  8. Fadilah SAW, Faridah I, Cheong SK
    Med J Malaysia, 2000 Dec;55(4):513-5.
    PMID: 11221167
    The effect of L-asparaginase on the thyroid gland has not been well documented. We report the first two cases of hyperthyroidism associated with thyroid nodule following L-asparaginase therapy for acute lymphoblastic leukemia (ALL). The thyroid function abnormalities were not severe, short-lived and did not require specific therapy.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  9. Shabaruddin FH, Chen LC, Elliott RA, Payne K
    Pharmacoeconomics, 2013 Apr;31(4):277-88.
    PMID: 23529208 DOI: 10.1007/s40273-013-0033-x
    BACKGROUND: Chemotherapy offers cancer patients the potential benefits of improved mortality and morbidity but may cause detrimental outcomes due to adverse drug events (ADEs), some of which requiring time-consuming, resource-intensive and costly clinical management. To appropriately assess chemotherapy agents in an economic evaluation, ADE-related parameters such as the incidence, (dis)utility and cost of ADEs should be reflected within the model parameters. To date, there has been no systematic summary of the existing literature that quantifies the utilities of ADEs due to healthcare interventions in general and chemotherapy treatments in particular.

    OBJECTIVE: This review aimed to summarize the current evidence base of reported utility values for chemotherapy-related ADEs.

    METHODS: A structured electronic search combining terms for utility, utility valuation methods and generic terms for cancer treatment was conducted in MEDLINE and EMBASE in June 2011. Inclusion criteria were: (1) elicitation of utility values for chemotherapy-related ADEs and (2) primary data. Two reviewers identified studies and extracted data independently. Any disagreements were resolved by a third reviewer.

    RESULTS: Eighteen studies met the inclusion criteria from the 853 abstracts initially identified, collectively reporting 218 utility values for chemotherapy-related ADEs. All 18 studies used short descriptions (vignettes) to obtain the utility values, with nine studies presenting the vignettes used in the valuation exercises. Of the 218 utility values, 178 were elicited using standard gamble (SG) or time trade-off (TTO) approaches, while 40 were elicited using visual analogue scales (VAS). There were 169 utility values of specific chemotherapy-related ADEs (with the top ten being anaemia [34 values], nausea and/or vomiting [32 values], neuropathy [21 values], neutropenia [12 values], diarrhoea [12 values], stomatitis [10 values], fatigue [8 values], alopecia [7 values], hand-foot syndrome [5 values] and skin reaction [5 values]) and 49 of non-specific chemotherapy-related adverse events. In most cases, it was difficult to directly compare the utility values as various definitions and study-specific vignettes were used for the ADEs of interest.

    LIMITATIONS: This review was designed to provide an overall description of existing literature reporting utility values for chemotherapy-related ADEs. The findings were not exhaustive and were limited to publications that could be identified using the search strategy employed and those reported in the English language.

    CONCLUSIONS: This review identified wide ranges in the utility values reported for broad categories of specific chemotherapy-related ADEs. There were difficulties in comparing the values directly as various study-specific definitions were used for these ADEs and most studies did not make the vignettes used in the valuation exercises available. It is recommended that a basic minimum requirement be developed for the transparent reporting of study designs eliciting utility values, incorporating key criteria such as reporting how the vignettes were developed and presenting the vignettes used in the valuation tasks as well as valuing and reporting the utility values of the ADE-free base states. It is also recommended, in the future, for studies valuing the utilities of chemotherapy-related ADEs to define the ADEs according to the National Cancer Institute (NCI) definitions for chemotherapy-related ADEs as the use of the same definition across studies would ease the comparison and selection of utility values and make the overall inclusion of adverse events within economic models of chemotherapy agents much more straightforward.

    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  10. Bor G, Mat Azmi ID, Yaghmur A
    Ther Deliv, 2019 02;10(2):113-132.
    PMID: 30678550 DOI: 10.4155/tde-2018-0062
    The emergence of nanomedicine as an innovative and promising alternative technology shows many advantages over conventional cancer therapies and provides new opportunities for early detection, improved treatment, and diagnosis of cancer. Despite the cancer nanomedicines' capability of delivering chemotherapeutic agents while providing lower systemic toxicity, it is paramount to consider the cancer complexity and dynamics for bridging the translational bench-to-bedside gap. It is important to conduct appropriate investigations for exploiting the tumor microenvironment, and achieving a more comprehensive understanding of the fundamental biological processes in cancer and their roles in modulating nanoparticle-protein interactions, blood circulation, and tumor penetration. This review provides an overview of the current cancer nanomedicines, the major challenges, and the future opportunities in this research area.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  11. Chan XH, Sabaratnam V, Abdullah N, Phan CW
    Int J Med Mushrooms, 2020;22(6):521-534.
    PMID: 32865894 DOI: 10.1615/IntJMedMushrooms.2020035031
    The research field of culinary and medicinal mushrooms has been well developed since the first relevant publication in 1966. However, to date, there has been no bibliometric analysis published specifically for this field. This study aimed to assess the most influential publications as well as the research trends and important drivers in the field of culinary and medicinal mushrooms. Scopus was used to identify relevant publications and the 1000 most-cited publications were identified and analyzed. Bradford's law of scattering shows one-third of the papers were published in 14 core journals, with a total of 102 papers published in International Journal of Medicinal Mushrooms. There is an insignificant negative correlation (Pearson's correlation coefficient, r = -0.355) between the journal impact factor and publication count. VOSviewer was used to generate a country network. China represents Asia's research center in this field, having contributed 20% of the 1000 most-cited publications. A term map was also created to visualize the co-occurrence of key terms in the domain. Different biological activities such as antioxidant and antitumor properties of mushrooms appeared to be a recurring topic in this field. Wasser (2003) showed the highest citation count (n = 1282), which is almost double the second most-cited publication (n = 611). There is a weak positive correlation (r = +0.237) between the years since publication and total citation count. In conclusion, this bibliometric study will assist researchers to comprehend the current status of the research on culinary and medicinal mushrooms, and to visualize the future impact of such an important field.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  12. Musalli AH, Talukdar PD, Roy P, Kumar P, Wong TW
    Carbohydr Polym, 2020 Sep 15;244:116488.
    PMID: 32536388 DOI: 10.1016/j.carbpol.2020.116488
    This study examined the effects of folate environment of oligochitosan nanoparticles on their cellular internalization profiles in human melanoma cells. The conjugates and nanoparticles of oligochitosan-folate, oligochitosan-carboxymethyl-5-fluorouracil, and oligochitosan-folate-carboxymethyl-5-fluorouracil were synthesized by carbodiimide chemistry and prepared by nanospray drying technique respectively. The cellular internalization profiles of oligochitosan-folate nanoparticles against the human malignant melanoma cell line (SKMEL-28) were evaluated using confocal scanning electron microscopy technique through fluorescence labelling and endocytic inhibition, as a function of nanoparticulate folate content, size, polydispersity index, zeta potential, shape, surface roughness and folate population density. The cytotoxicity and cell cycle arrest characteristics of oligochitosan-folate-carboxymethyl-5-fluorouracil nanoparticles, prepared with an optimal folate content that promoted cellular internalization, were evaluated against the oligochitosan-folate and oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles. The oligochitosan-folate conjugate nanoparticles were endocytosed by melanoma cells via caveolae- and lipid raft-mediated endocytic pathways following them binding to the cell surface folate receptor. Nanoparticles that were larger and with higher folic acid contents and zeta potentials exhibited a higher degree of cellular internalization. Excessive conjugation of nanoparticles with folate resulted in a high nanoparticulate density of folate which hindered nanoparticles-cell interaction via folate receptor binding and reduced cellular internalization of nanoparticles. Conjugating oligochitosan with 20 %w/w folate was favorable for cellular uptake as supported by in silico models. Conjugating of oligochitosan nanoparticles with carboxymethyl-5-fluorouracil and 20 %w/w of folate promoted nanoparticles-folate receptor binding, cellular internalization and cancer cell death via cell cycle arrest at S phase at a lower drug dose than oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles and neat carboxymethyl-5-fluorouracil.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  13. Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, et al.
    Chem Biol Interact, 2019 Aug 25;309:108720.
    PMID: 31226287 DOI: 10.1016/j.cbi.2019.06.033
    Cancer is one of the major diseases that cause a high number of deaths globally. Of the major types of cancers, lung cancer is known to be the most chronic form of cancer in the world. The conventional management of lung cancer includes different medical interventions like chemotherapy, surgical removal, and radiation therapy. However, this type of approach lacks specificity and also harms the adjacent normal cells. Lately, nanotechnology has emerged as a promising intervention in the management and treatment of lung cancers. Nanotechnology has revolutionized the existing modalities and focuses primarily on reducing toxicity and improving the bioavailability of anticancer drugs to the target tumor cells. Nanocarrier systems are being currently used extensively to exploit and to overcome the obstructions induced by cancers in the lungs. The nano-carrier-loaded therapeutic drug delivery methods have shown promising potential in treating lung cancer as its target is to control the growth of tumor cells. In this review, various modes of nano drug delivery options like liposomes, dendrimers, quantum dots, carbon nanotubes and metallic nanoparticles have been discussed. Nano-carrier drug delivery systems emerge as a promising approach and thus is expected to provide newer and advanced avenues in cancer therapeutics.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  14. Wong SC, Kamarudin MNA, Naidu R
    Nutrients, 2021 Mar 16;13(3).
    PMID: 33809462 DOI: 10.3390/nu13030950
    Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin's anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  15. Lee SH, Reed-Newman T, Anant S, Ramasamy TS
    Stem Cell Rev Rep, 2020 12;16(6):1185-1207.
    PMID: 32894403 DOI: 10.1007/s12015-020-10031-8
    Quiescence in cancer cells is considered a therapeutic challenge as it confers dormancy in tumour, hence circumventing inherent anti-neoplastic surveillance system and standard-of-care cancer therapeutics including chemotherapy and radiotherapy. Since majority of the therapeutics target actively proliferating cancer cells, cancer cells eventually develop quiescent nature as mechanism of survival and cancer progression under both niche and therapeutic pressures. Quiescence state in cancer cells, eventually, confers resistant and aggressive nature to conventional cancer therapies, resulting in disease progression and relapse. Therefore, targeting quiescent cancer cells or cancer stem cells is a promising therapeutic approach, however an extensive review of the relevant information is needed in order to device an effective therapy. While the evidence of quiescence regulation in CSCs is rather a complex molecular and cellular network, herein, we aim to provide a comprehensive understanding of both intrinsic and extrinsic regulation in association with the function of CSCs. Findings on induction of quiescent state in CSCs population, its regulation at both cellular and molecular level, key molecular regulators, cellular events and processes including potential targets to develop therapeutics are extensively reviewed. This review also highlights the impact of CSC plasticity on quiescence which capturing the key challenge of targeting the cells in this state. Beyond understanding the mechanisms underlying quiescence nature of cancer cells, this review provides insightful perspective and future direction on insight in targeting these populations, hence collapse the tumour dormancy programme in order to eradicate tumour mass as a whole. Capability of CSCs to establish quiescent state as a mechanism of survival during unfavorable conditions, as well as its impact in cancer progression and subsequent relapse, including the potential therapeutic strategy to eradicate this CSCs sub-population in the tumor mass as an effective cancer therapy.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  16. Swamy SG, Kameshwar VH, Shubha PB, Looi CY, Shanmugam MK, Arfuso F, et al.
    Target Oncol, 2017 02;12(1):1-10.
    PMID: 27510230 DOI: 10.1007/s11523-016-0452-7
    Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer diagnosed worldwide. HCC occurs due to chronic liver disease and is often diagnosed at advanced stages. Chemotherapeutic agents such as doxorubicin are currently used as first-line agents for HCC therapy, but these are non-selective cytotoxic molecules with significant side effects. Sorafenib, a multi-targeted tyrosine kinase inhibitor, is the only approved targeted drug for HCC patients. However, due to adverse side effects and limited efficacy, there is a need for the identification of novel pharmacological drugs beyond sorafenib. Several agents that target and inhibit various signaling pathways involved in HCC are currently being assessed for HCC treatment. In the present review article, we summarize the diverse signal transduction pathways responsible for initiation as well as progression of HCC and also the potential anticancer effects of selected targeted therapies that can be employed for HCC therapy.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use*
  17. Goense L, van Rossum PS, Kandioler D, Ruurda JP, Goh KL, Luyer MD, et al.
    Ann N Y Acad Sci, 2016 10;1381(1):50-65.
    PMID: 27384385 DOI: 10.1111/nyas.13113
    Esophageal cancer is the eighth most common cancer worldwide, and the incidence of esophageal carcinoma is rapidly increasing. With the advent of new staging and treatment techniques, esophageal cancer can now be managed through various strategies. A good understanding of the advances and limitations of new staging techniques and how these can guide in individualizing treatment is important to improve outcomes for esophageal cancer patients. This paper outlines the recent progress in staging and treatment of esophageal cancer, with particularly attention to endoscopic techniques for early-stage esophageal cancer, multimodality treatment for locally advanced esophageal cancer, assessment of response to neoadjuvant treatment, and the role of cervical lymph node dissection. Furthermore, advances in robot-assisted surgical techniques and postoperative recovery protocols that may further improve outcomes after esophagectomy are discussed.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  18. Tan KX, Danquah MK, Sidhu A, Ongkudon CM, Lau SY
    Eur J Pharm Sci, 2017 Jan 01;96:8-19.
    PMID: 27593990 DOI: 10.1016/j.ejps.2016.08.061
    Cancer is a leading cause of global mortality. Whilst anticancer awareness programs have increased significantly over the years, scientific research into the development of efficient and specific drugs to target cancerous cells for enhanced therapeutic effects has not received much clinical success. Chemotherapeutic agents are incapable of acting specifically on cancerous cells, thus causing low therapeutic effects accompanied by toxicity to surrounding normal tissues. The search for smart, highly specific and efficient cancer treatments and delivery systems continues to be a significant research endeavor. Targeted cancer therapy is an evolving treatment approach with great promise in enhancing the efficacy of cancer therapies via the delivery of therapeutic agents specifically to and into desired tumor cells using viral or non-viral targeting elements. Viral oncotherapy is an advanced cancer therapy based on the use of oncolytic viruses (OV) as elements to specifically target, replicate and kill malignant cancer cells selectively without affecting surrounding healthy cells. Aptamers, on the other hand, are non-viral targeting elements that are single-stranded nucleic acids with high specificity, selectivity and binding affinity towards their cognate targets. Aptamers have emerged as a new class of bioaffinity targeting elements can be generated and molecularly engineered to selectively bind to diverse targets including proteins, cells and tissues. This article discusses, comparatively, the potentials and impacts of both viral and aptamer-mediated targeted cancer therapies in advancing conventional drug delivery systems through enhanced target specificity, therapeutic payload, bioavailability of the therapeutic agents at the target sites whilst minimizing systemic cytotoxicity. This article emphasizes on effective site-directed targeting mechanisms and efficacy issues that impact on clinical applications.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  19. Namazi H, Kulish VV, Wong A, Nazeri S
    Biomed Res Int, 2016;2016:8437247.
    PMID: 27376087 DOI: 10.1155/2016/8437247
    Cancer is a class of diseases characterized by out-of-control cells' growth which affect cells and make them damaged. Many treatment options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to investigate about treatment of infected tissue. Although many efforts have been made on studying and measuring drug penetration depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is corroborated by comparison with the values measured by experiments.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
  20. Hussain Z, Arooj M, Malik A, Hussain F, Safdar H, Khan S, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):1015-1024.
    PMID: 29873531 DOI: 10.1080/21691401.2018.1478420
    Development and formulation of an efficient and safe therapeutic regimen for cancer theranostics are dynamically challenging. The use of mono-therapeutic cancer regimen is generally restricted to optimal clinical applications, on account of drug resistance and cancer heterogeneity. Combinatorial treatments can employ multi-therapeutics for synergistic anticancer efficacy whilst reducing the potency of individual moieties and diminishing the incidence of associated adverse effects. The combo-delivery of nanotherapeutics can optimize anti-tumor efficacy while reversing the incidence of drug resistance, aiming to homogenize pharmacological profile of drugs, enhance circulatory time, permit targeted drug accumulation, achieve multi-target dynamic approach, optimize target-specific drug binding and ensure sustained drug release at the target site. Numerous nanomedicines/nanotherapeutics have been developed by having dynamic physicochemical, pharmaceutical and pharmacological implications. These innovative delivery approaches have displayed specialized treatment effects, alone or in combination with conventional anticancer approaches (photodynamic therapy, radiotherapy and gene therapy), while reversing drug resistance and potential off-target effects. The current review presents a comprehensive overview of nanocarrier aided multi-drug therapies alongside recent advancements, future prospects, and the pivotal requirements for interdisciplinary research.
    Matched MeSH terms: Antineoplastic Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links