Displaying publications 21 - 40 of 165 in total

Abstract:
Sort:
  1. Dörk T, Peterlongo P, Mannermaa A, Bolla MK, Wang Q, Dennis J, et al.
    Sci Rep, 2019 08 29;9(1):12524.
    PMID: 31467304 DOI: 10.1038/s41598-019-48804-y
    Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
    Matched MeSH terms: Breast Neoplasms/metabolism
  2. Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, et al.
    Sci Signal, 2014 Jun 17;7(330):ra58.
    PMID: 24939894 DOI: 10.1126/scisignal.2005170
    Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
    Matched MeSH terms: Breast Neoplasms/metabolism
  3. Naidu R, Har YC, Taib NA
    Scand J Clin Lab Invest, 2011 Oct;71(6):500-6.
    PMID: 21745146 DOI: 10.3109/00365513.2011.590223
    The purpose of this study was to investigate the association between the peptidyl-propyl-cis/trans isomerase 1 (PIN1) -842(G > C) and -667(T > C) polymorphic variants and breast cancer risk among Malaysian ethnic groups namely the Malays, Chinese and Indians, as well as clinico-pathological characteristics of the patients.
    Matched MeSH terms: Breast Neoplasms/metabolism
  4. Ohba K, Ichiyama K, Yajima M, Gemma N, Nikaido M, Wu Q, et al.
    PLoS One, 2014;9(5):e97787.
    PMID: 24858917 DOI: 10.1371/journal.pone.0097787
    High prevalence of infection with high-risk human papilloma virus (HPV) ranging from 25 to 100% (average 31%) was observed in breast cancer (BC) patients in Singapore using novel DNA chip technology. Early stage of BC demonstrated higher HPV positivity, and BC positive for estrogen receptor (ER) showed significantly higher HPV infection rate. This unique association of HPV with BC in vivo prompted us to investigate a possible involvement of HPV in early stages of breast carcinogenesis. Using normal breast epithelial cells stably transfected with HPV-18, we showed apparent upregulation of mRNA for the cytidine deaminase, APOBEC3B (A3B) which is reported to be a source of mutations in BC. HPV-induced A3B overexpression caused significant γH2AX focus formation, and DNA breaks which were cancelled by shRNA to HPV18 E6, E7 and A3B. These results strongly suggest an active involvement of HPV in the early stage of BC carcinogenesis via A3B induction.
    Matched MeSH terms: Breast Neoplasms/metabolism
  5. Mdpaiman N, Md Ali SA, Mdzin R, Meor Kamal MZ, Md Amin WA, Nallusamy M, et al.
    PLoS One, 2014;9(2):e89172.
    PMID: 24586570 DOI: 10.1371/journal.pone.0089172
    Breast cancer estrogen receptor (ER) status is one of the strong additional factors in predicting response of patients towards hormonal treatment. The main aim of this study was to assess the morphological characteristics and proliferative activity using MIB-1(Ki-67) of estrogen receptor negative invasive breast ductal carcinoma (NOS type) as well as to correlate these features with clinicopathological data. We also aim to study the expression of c-erbB2 in ER negative breast tumors. High proliferative rate (MIB-1 above 20%) was observed in 63 (63.6%) of 99 ER negative tumors and that these tumors were associated with high expression of c-erbB2 (57.6%). We observed that MIB-1 is a reliable independent prognostic indicator for ER negative infiltrating ductal carcinoma in this study.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  6. Saxena N, Hartman M, Yip CH, Bhoo-Pathy N, Khin LW, Taib NA, et al.
    PLoS One, 2012;7(9):e45809.
    PMID: 23029254 DOI: 10.1371/journal.pone.0045809
    Lymph node ratio (LNR, i.e. the ratio of the number of positive nodes to the total number of nodes excised) is reported to be superior to the absolute number of nodes involved (pN stage) in classifying patients at high versus low risk of death following breast cancer. The added prognostic value of LNR over pN in addition to other prognostic factors has never been assessed.
    Matched MeSH terms: Breast Neoplasms/metabolism
  7. Lee CS, Taib NA, Ashrafzadeh A, Fadzli F, Harun F, Rahmat K, et al.
    PLoS One, 2016;11(2):e0149551.
    PMID: 26890881 DOI: 10.1371/journal.pone.0149551
    Heavily glycosylated mucin glycopeptides such as CA 27.29 and CA 15-3 are currently being used as biomarkers for detection and monitoring of breast cancer. However, they are not well detected at the early stages of the cancer. In the present study, perchloric acid (PCA) was used to enhance detection of mucin-type O-glycosylated proteins in the serum in an attempt to identify new biomarkers for early stage breast cancer. Sensitivity and specificity of an earlier developed sandwich enzyme-linked lectin assay were significantly improved with the use of serum PCA isolates. When a pilot case-control study was performed using the serum PCA isolates of normal participants (n = 105) and patients with stage 0 (n = 31) and stage I (n = 48) breast cancer, higher levels of total O-glycosylated proteins in sera of both groups of early stage breast cancer patients compared to the normal control women were demonstrated. Further analysis by gel-based proteomics detected significant inverse altered abundance of proteoglycan 4 and plasma protease C1 inhibitor in both the early stages of breast cancer patients compared to the controls. Our data suggests that the ratio of serum proteoglycan 4 to protease C1 inhibitor may be used for screening of early breast cancer although this requires further validation in clinically representative populations.
    Matched MeSH terms: Breast Neoplasms/metabolism
  8. Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, et al.
    PLoS One, 2015;10(6):e0129190.
    PMID: 26061048 DOI: 10.1371/journal.pone.0129190
    p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.
    Matched MeSH terms: Breast Neoplasms/metabolism
  9. Taha H, Looi CY, Arya A, Wong WF, Yap LF, Hasanpourghadi M, et al.
    PLoS One, 2015;10(5):e0126126.
    PMID: 25946039 DOI: 10.1371/journal.pone.0126126
    Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
    Matched MeSH terms: Breast Neoplasms/metabolism
  10. Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, et al.
    PLoS One, 2020;15(5):e0233461.
    PMID: 32442190 DOI: 10.1371/journal.pone.0233461
    Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
    Matched MeSH terms: Breast Neoplasms/metabolism
  11. Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, et al.
    PLoS One, 2017;12(8):e0182357.
    PMID: 28771532 DOI: 10.1371/journal.pone.0182357
    Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
    Matched MeSH terms: Triple Negative Breast Neoplasms/metabolism
  12. Hasanpourghadi M, Pandurangan AK, Mustafa MR
    Pharmacol Res, 2018 02;128:376-388.
    PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009
    Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  13. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Breast Neoplasms/metabolism
  14. Pau Ni IB, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Aina Emran N, et al.
    Pathol Res Pract, 2010 Apr 15;206(4):223-8.
    PMID: 20097481 DOI: 10.1016/j.prp.2009.11.006
    Genomic and transcriptomic alterations that affect cellular processes, such as cell proliferation, differentiation, apoptosis and invasion, commonly occur in breast oncogenesis. Epidemiological evidence has proven that the risk of breast cancer predisposition varies among different ethnicities. This study aims to identify the transcriptome changes that commonly occur during the transition of normal breast epithelium to carcinoma in three local ethnic groups (Malays, Chinese and Indians). The gene expression patterns of 43 breast carcinomas with 43 patient-matched normal breast tissues were investigated using Affymetrix U133A GeneChip (containing 22,283 probe sets targeting approximately 18,400 different transcripts) and analyzed with GeneSpring GX10. Our findings revealed a total of 33 significantly differentially expressed genes, which showed>2-fold change at a 99.9% confidence interval level (p<0.001). The significantly differentially expressed genes included CD24, CD36, CD9, TACSTD1, TACSTD2, HBB, LEP, LPL, AKR1C1, AKR1C2 and AKR1C3. Our results indicate that the vast majority of gene expression changes, from normal breast epithelial to carcinoma, found in our three major ethnic populations are similar to those in the Caucasian population. Further study of the differentially expressed genes identified in our present study is needed to search for potential breast tumor biomarkers. This will eventually help to improve the therapeutic and treatment strategies for breast cancer patients in the future.
    Matched MeSH terms: Breast Neoplasms/metabolism
  15. Seow HF, Yip WK, Loh HW, Ithnin H, Por P, Rohaizak M
    Pathol Oncol Res, 2010 Jun;16(2):239-48.
    PMID: 19882362 DOI: 10.1007/s12253-009-9216-3
    Activation of Akt signaling pathway has been documented in various human malignancies, including breast carcinoma. The objective of this study is to determine the incidence of Akt phosphorylation in breast tumours and its relationship with expression of ER-alpha, ER-beta, HER2, Ki-67 and phosphorylated Bcl-2 associated death domain (p-BAD). Immunohistochemical staining was performed to detect these molecules on 43 paraffin-embedded breast tumour tissues with commercially available antibodies. Eighteen (41.9%), 3 (7.0%), 23 (53.5%), 35 (81.4%), 21 (48.8%), 29 (67.4%), and 34 (81.0%) of breast tumours were positive for nuclear ER-alpha, nuclear ER-beta, membranous HER2, cytonuclear p-Akt (Thr308), p-Akt (Ser473), p-BAD and Ki-67, respectively. ER-alpha expression was inversely correlated with HER2 and Ki-67 (P = 0.041 and P = 0.040, respectively). The p-Akt (Ser473) was correlated with increased level of p-BAD (Ser136) (P = 0.012). No relationship of Akt phosphorylation with HER2, ER-alpha or ER-beta was found. The p-Akt (Ser473) immunoreactivity was significantly higher in stage IV than in stage I or II (P = 0.036 or P = 0.009). The higher Ki-67 and lower ER-alpha expression showed an association with patient age of <50 years (P = 0.004) and with positive nodal status (P = 0.033), respectively. Our data suggest that the Akt phosphorylation and inactivation of its downstream target, BAD may play a role in survival of breast cancer cell. This study does not support the simple model of linear HER2/PI3K/Akt pathway in breast cancer.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  16. Looi LM, Azura WW, Cheah PL, Ng MH
    Pathology, 2001 Aug;33(3):283-6.
    PMID: 11523925
    This investigation was carried out to gain insight into the prevalence of pS2 expression in invasive ductal breast carcinoma in the Malaysian population and its correlation with oestrogen receptor (ER) protein expression and tumour aggressiveness. Seventy consecutive infiltrating ductal breast carcinomas treated with mastectomy and axillary lymph node clearance were investigated, using the standard avidin-biotin complex immunoperoxidase method with microwave antigen retrieval and commercial monoclonal antibodies (Dako), for expression of pS2 and human ER. This was correlated against histological grade (modified Bloom and Richardson) and the presence of axillary lymph node metastasis of these carcinomas. Four (5.7%) were grade 1, 40 (57.1%) grade 2 and 26 (37.1%) grade 3 tumours. A total of 45 (64%) showed histological evidence of axillary lymph node metastasis. Forty (57%) were ER-positive, while 31 (44%) were pS2-positive. There was a statistically significant correlation between pS2 and ER expressions (chi2-test with Yates correction: P<0.005). There was no correlation between pS2 expression and histological grade (P>0.1) and the presence of lymph node metastasis (P>0.1). Our findings support the views that pS2 may be a co-marker of endocrine responsiveness in invasive breast cancer and that it does not influence breast cancer biology in terms of potential for metastatic spread.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  17. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al.
    Oncotarget, 2014 Dec 15;5(23):12273-90.
    PMID: 25401518
    Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  18. Tiong KH, Tan BS, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Oncotarget, 2016 Sep 06;7(36):57633-57650.
    PMID: 27192118 DOI: 10.18632/oncotarget.9328
    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  19. Naidu R, Wahab NA, Yadav MM, Kutty MK
    Oncol Rep, 2002 Mar-Apr;9(2):409-16.
    PMID: 11836618
    Overexpression and amplification of cyclin D1 were investigated by immunohistochemistry and differential polymerase chain reaction (dPCR) in 440 formalin-fixed primary breast carcinoma tissues. Overexpression of cyclin D1 was detected in 60% (263/440) and amplification of cyclin D1 was noted in 27% (119/440) of the primary breast carcinomas. Molecular analysis demonstrated that cyclin D1 was amplified in 30% (7/23) of the comedo DCIS, 22% (9/41) of the comedo DCIS and 32% (13/41) of the adjacent invasive ductal carcinomas, 30% (82/270) of the invasive ductal carcinomas, 27% (9/33) of the invasive lobular carcinomas, 19% (4/21) of the colloid carcinomas and 13% (2/15) of the medullary carcinomas. Cyclin D1 was amplified in 11% (2/19) of the invasive ductal carcinomas but not in the adjacent non-comedo DCIS lesions. Our observation showed that cyclin D1 was strongly positive in 61% (14/23) of the comedo subtype, 61% (11/18) of the non-comedo subtype, 59% (24/41) of the comedo DCIS and 63% (26/41) of the adjacent invasive ductal carcinomas, 53% (10/19) of the non-comedo DCIS and 58% (11/19) of the adjacent invasive lesions, 58% (157/270) of the invasive ductal carcinomas, 73% (24/33) of the invasive lobular carcinomas, 52% (11/21) of the colloid carcinomas and 27% (4/15) of the medullary carcinomas. A significant association was observed between in situ components and adjacent invasive lesions for cyclin D1 expression (p<0.05) and amplification (p<0.05). A significant relationship was noted between amplification of cyclin D1 and lymph node metastases (p<0.05) but not with histological grade (p>0.05), estrogen receptor status (p>0.05) and proliferation index (Ki-67 and PCNA) (p>0.05). However, overexpression of cyclin D1 was statistically associated with well differentiated tumors (p<0.05) and estrogen receptor positivity (p<0.05). No relationship was seen with nodal status (p>0.05) and proliferation index (Ki-67 and PCNA) (p>0.05). These observations suggest that tumors positive for cyclin D1 protein may have features of good prognosis but amplification of cyclin D1 gene could be an indicator of tumors with poor prognostic features. Although majority of the Malaysian patients belong to younger age group (<50 years old), amplification and expression of cyclin D1 was not statistically associated with patient age (p>0.05). These observations indicate that amplification and up-regulation of cyclin D1 may be independent of patient age. Moreover, overexpression and amplification of cyclin D1 in preinvasive, preinvasive and adjacent invasive lesions, and invasive carcinomas suggest that the gene may play an important role in early and late stages of breast carcinogenesis.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  20. Ee YS, Lai LC, Reimann K, Lim PK
    Oncol Rep, 1999 6 22;6(4):843-6.
    PMID: 10373668
    Transforming growth factor-beta (TGF-beta) has been shown to inhibit the growth of mammary epithelial cells and may play a protective role in mammary carcinogenesis. In contrast, oestrogens promote the development of breast cancer. Oestrone sulphate (E1S) is a huge reservoir of active oestrogens in the breast being converted to the weak oestrogen, oestrone (E1), by oestrone sulphatase. E1 is reversibly converted by oestradiol-17beta hydroxysteroid dehydrogenase to the potent oestrogen, oestradiol (E2). The aim of this study was to assess the effect of the TGF-beta1 isoform on growth and oestrogen metabolism in the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines. The results showed that TGF-beta1 significantly inhibited cell growth and stimulated the conversion of E1S to E1 and E1 to E2 in the MCF-7 cell line. In the MDA-MB-231 cell line TGF-beta1 significantly stimulated cell growth and inhibited the interconversions between E1 and E2. In conclusion, the growth inhibitory effect of TGF-beta1 on the MCF-7 cell line would appear to confer a protective effect in breast cancer. However, its ability to increase the amount of E2 would increase the risk of breast cancer. Which of these effects predominates in vivo remains to be explored. The growth stimulatory effect of TGF-beta1 on the MDA-MB-231 cell line probably acts through a mechanism independent of the effect of TGF-beta1 on oestrogen concentrations since this cell line is hormone unresponsive.
    Matched MeSH terms: Breast Neoplasms/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links