Displaying publications 21 - 40 of 110 in total

Abstract:
Sort:
  1. Byrne SN, Sarchio SN
    Oncoimmunology, 2014 Jan 01;3(1):e27562.
    PMID: 24744978
    Sunlight causes skin cancer by directly damaging DNA as well as by suppressing antitumor immune responses. A major mechanism whereby sunlight exerts immunosuppressive effects is by modulating the migration of chemokine (C-X-C motif) receptor 4 (CXCR4)-expressing dermal mast cells into and away from the skin. We have demonstrated the importance of this by showing that the systemic administration of the CXCR4 antagonist AMD3100 prevents sunlight-induced immunosuppression as well as the consequent carcinogenic response. Our results highlight the therapeutic potential of antagonizing CXCR4 signaling, especially in individuals who are at high risk of developing skin cancer.
    Matched MeSH terms: Carcinogens
  2. Rosma, A., Afiza, T. S., Wan Nadiah, W. A., Liong, M. T., Gulam, R. R. A.
    MyJurnal
    Unprocessed ‘budu’ is a mixture of anchovies and salt that has been fermented for a period of time, and has not been heat-treated nor formulated with additional ingredients. This study analyzed Malaysian
    unprocessed ‘budu’ from 12 producers for microbiological, salt, protein, histamine and 3-MCPD contents.
    The results demonstrated that Malaysian unprocessed ‘budu’ were free from pathogenic Coliform, E. coli,
    V. parahaemolyticus and V. cholerae contaminations. Carcinogenic 3-MCPD was below detection level of 2 ppb for all 12 samples tested. However, 58% of the unprocessed ‘budu’ had histamine content greater than the hazardous levels of 50 mg/100 g sample.
    Matched MeSH terms: Carcinogens
  3. Han H, Hu S, Syed-Hassan SSA, Xiao Y, Wang Y, Xu J, et al.
    Bioresour Technol, 2017 Jul;236:138-145.
    PMID: 28399417 DOI: 10.1016/j.biortech.2017.03.112
    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions.
    Matched MeSH terms: Carcinogens
  4. Khodijah Zulkiflee, Zunariah Buyong, Asmah Hanim Hamdan
    MyJurnal
    Rat large intestine is an established model to study the effect of
    carcinogens. There are several distinctive features among mammalian gastrointestinal
    tracts in gross anatomy but they share some basic similar structures. The variety in
    digestive system relies on its physiology. Rats rarely eat high fatty diets, thus the
    function of gall bladder become less significant in their digestive system and this is
    justified by the fact that rats have none. Rats have large caecum designated for their
    fermentation chamber to digest cellulose. Another notable difference is the size and
    length of colon itself, in which human colon is significantly bigger and longer. We aimed
    to demonstrate the gross anatomy and histology of rat digestive system particularly the
    large intestine. (Copied from article).
    Matched MeSH terms: Carcinogens
  5. Mohd Mahathir Suhaimi Shamsuri, Leman, A.M.
    MyJurnal
    Indoor pollution increasingly becomes a public concern. These concerns are related to energy efficiency in a
    building. There are various ways in which it can ensure energy conservation can be achieved, including superinsulation
    and reduced fresh air exchange. As a result, indoor air becomes stagnant and odours, thereafter contaminants of air will
    accumulate and will certainly disrupt human health. It is quite difficult to make people comfortable in a building with
    consumption of energy-saving and human health guaranteed. Indoor plants are one of the alternative solutions that
    have been studied since the last three decades. This paper intends to review the abilities of indoor plants to purify air,
    and the ways used by previous researchers to prove that indoor plants can treat the air. In general, it can be stated that
    indoor plants are able to absorb various types of volatile organic compounds (VOCs). An advantage of indoor plants
    to cure air from carcinogen gas is greatly needed for human health. Therefore, studies on indoor plants to neutralize
    the air are gaining attention. Enclosed space or chamber is often used by researchers to test the ability of indoor plants
    absorb gaseous toxins in their study; because it is easy to handle and can quickly determine the absorption rate. In the
    other hand, environmental factors such as temperature, humidity, and light are important to be taken into consideration
    during the study. As a conclusion, it can be stated that the existence of indoor plants in a building is very reasonable,
    because it can give positive impacts on human health and the total energy consumption.
    Matched MeSH terms: Carcinogens
  6. Gafar, A.A., Khayat, M.E., Abdul Rahim, M.B.H., Shukor, M.Y.
    MyJurnal
    Acrylamide is a synthetic monomer that has been classified as toxic and carcinogenic apart
    from its diverse application in the industry. Its application is in the formation of
    polyacrylamide. Polyacrylamide usage is diverse and is found as herbicide formulation, as soil
    treatment agent and in water treatment plants. Deaths and sickness due to the accidental
    exposure to acrylamide have been reported while chronic toxicity is also a source of the
    problem. This review highlighted the toxic effect of acrylamide to various organisms like
    human, animal and plant. This review also discusses on the potential use of biological
    technologies to remediate acrylamide pollution in the environment and the degradation
    pathways these microorganisms utilize to assimilate acrylamide as a nitrogen, carbon or both as
    carbon and nitrogen sources.
    Matched MeSH terms: Carcinogens
  7. Liow CH, Sahrim Ahmad, Khairiah Badri
    In-situ polymerization method was used to prepare palm-based polyurethane (PU) composites loading with 15 wt% magnetite (Fe3O4), polyaniline (PANI) and Fe3O4 coated with PANI labeled as PU15, PP and PPM, respectively. FTIR spectroscopy analysis indicated a shift in the carbonyl, C=O and NH in PP. The shift of the peak indicated that there was hydrogen bonding between the C=O (proton acceptor) of urethane with NH (proton-donator) of PANI. PPM gave the highest impact and flexural strengths at 4875 kJ/ m2 and 42 MPa, respectively but with the lowest flexural modulus (1050 MPa). Two-stage degradation behavior was observed in the TGA thermogram.
    Matched MeSH terms: Carcinogens
  8. Abdulsalam M, Man HC, Abidin ZZ, Yunos KF, Idris AI
    Front Microbiol, 2020;11:675.
    PMID: 32477278 DOI: 10.3389/fmicb.2020.00675
    Colorants contained in palm oil mill effluent (POME) are recalcitrant and carcinogenic in nature. The commonly applied ponding treatment methods have been reported inefficient for remediating the concentration of the colorants before discharge. The need for sustainable and efficient treatment technique is crucial in order to preserve the environment. In this view, this study reported the first attempt to decolorize POME using a proliferate Klebsiella Pneumonia ABZ11 at varied inoculum sizes of 5-25% (v/v), initial color concentration (650-2,600 ADMI) and treatment time of 5-40 h. The treatment conditions were optimized using Response Surface Methodology. At optimal conditions of 20% (v/v) inoculum size, initial-color concentration of 2,600 ADMI, initial pH of 7 and 35 h treatment retention time, over 80.40% color removal was achieved with insignificant disparity compared with the model predicted value of 81.538%. Also, the Monod model excellently described the decolorization kinetic process with 0.9214 coefficient of correlation (R2), and the calculated maximum growth μ
    max
    ) and half-saturation constant (K
    s
    ) were 7.023 d-1 and 340.569 ADMI d-1, respectively. This study revealed that the Klebsiella Pneumonia ABZ11 was highly prolific and such feature may favor a synergistic biodegradation process.
    Matched MeSH terms: Carcinogens
  9. Zare D, Muhammad K, Bejo MH, Ghazali HM
    J Food Sci, 2015 Feb;80(2):T479-83.
    PMID: 25586500 DOI: 10.1111/1750-3841.12752
    Scombroid fish poisoning is usually associated with consumption of fish containing high levels of histamine. However, reports indicate that some cases have responded to antihistamine therapy while ingested histamine levels in these cases were low. Potentiation of histamine toxicity by some biogenic amines, and release of endogenous histamine by other compounds such as cis-urocanic acid (UCA) are some hypotheses that have been put forth to explain this anomaly. Very little is known about the effects of storage conditions on the production of both UCA isomers and biogenic amines in tuna. Thus, the production of trans- and cis-UCA, histamine, putrescine, and cadaverine in tuna during 15 d of storage at 0, 3, and 10 °C and 2 d storage at ambient temperature were monitored. The initial trans- and cis-UCA contents in fresh tuna were 2.90 and 1.47 mg/kg, respectively, whereas the levels of putrescine and cadaverine were less than 2 mg/kg, and histamine was not detected. The highest levels of trans- and cis-UCA were obtained during 15 d storage at 3 °C (23.74 and 21.79 mg/kg, respectively) while the highest concentrations of histamine (2796 mg/kg), putrescine (220.32 mg/kg) and cadaverine (1045.20 mg/kg) were obtained during storage at room temperature, 10 and 10 °C, respectively. Histamine content increased considerably during storage at 10 °C whereas trans- and cis-UCA contents changed slightly. The initial trans-UCA content decreased during storage at ambient temperature. Thus, unlike histamine, concentrations of trans- and cis-UCA did not result in elevated levels during storage of tuna.
    Matched MeSH terms: Carcinogens/analysis
  10. Motorykin O, Matzke MM, Waters KM, Massey Simonich SL
    Environ Sci Technol, 2013 Apr 2;47(7):3410-6.
    PMID: 23472838 DOI: 10.1021/es305295d
    The objective of this research was to investigate the relationship between lung cancer mortality rates, carcinogenic polycyclic aromatic hydrocarbon (PAH) emissions, and smoking on a global scale, as well as for different socioeconomic country groups. The estimated lung cancer deaths per 100,000 people (ED100000) and age standardized lung cancer death rate per 100,000 people (ASDR100000) in 2004 were regressed on PAH emissions in benzo[a]pyrene equivalence (BaPeq), smoking prevalence, cigarette price, gross domestic product per capita, percentage of people with diabetes, and average body mass index using simple and multiple linear regression for 136 countries. Using stepwise multiple linear regression, a statistically significant positive linear relationship was found between loge(ED100000) and loge(BaPeq) emissions for high (p-value <0.01) and for the combination of upper-middle and high (p-value <0.05) socioeconomic country groups. A similar relationship was found between loge(ASDR100000) and loge(BaPeq) emissions for the combination of upper-middle and high (p-value <0.01) socioeconomic country groups. Conversely, for loge(ED100000) and loge(ASDR100000), smoking prevalence was the only significant independent variable in the low socioeconomic country group (p-value <0.001). These results suggest that reducing BaPeq emissions in the U.S., Canada, Australia, France, Germany, Brazil, South Africa, Poland, Mexico, and Malaysia could reduce ED100000, while reducing smoking prevalence in Democratic People's Republic of Korea, Nepal, Mongolia, Cambodia, and Bangladesh could significantly reduce the ED100000 and ASDR100000.
    Matched MeSH terms: Carcinogens/analysis*
  11. Hamidi EN, Hajeb P, Selamat J, Abdull Razis AF
    Asian Pac J Cancer Prev, 2016;17(1):15-23.
    PMID: 26838201
    Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.
    Matched MeSH terms: Carcinogens/toxicity*
  12. Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S89-110.
    PMID: 26106145 DOI: 10.1093/carcin/bgv032
    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
    Matched MeSH terms: Carcinogens, Environmental/adverse effects*
  13. Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S61-88.
    PMID: 26106144 DOI: 10.1093/carcin/bgv031
    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
    Matched MeSH terms: Carcinogens, Environmental/adverse effects*
  14. Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S184-202.
    PMID: 26106137 DOI: 10.1093/carcin/bgv036
    One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
    Matched MeSH terms: Carcinogens, Environmental/adverse effects*
  15. Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S128-59.
    PMID: 26106135 DOI: 10.1093/carcin/bgv034
    The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
    Matched MeSH terms: Carcinogens, Environmental/adverse effects*
  16. Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, et al.
    Carcinogenesis, 2015 Jun;36 Suppl 1:S38-60.
    PMID: 26106143 DOI: 10.1093/carcin/bgv030
    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
    Matched MeSH terms: Carcinogens, Environmental/adverse effects*
  17. Yuswir NS, Praveena SM, Aris AZ, Ismail SN, Hashim Z
    Bull Environ Contam Toxicol, 2015 Jul;95(1):80-9.
    PMID: 25904089 DOI: 10.1007/s00128-015-1544-2
    Urban environmental quality is vital to be investigated as the majority of people live in cities. However, given the continuous urbanization and industrialization in urban areas, heavy metals are continuously emitted into the terrestrial environment and pose a great threat to human. In this study, a total of 76 urban surface soil samples were collected in the Klang district (Malaysia), and analyzed for total and bioavailable heavy metal concentrations by inductively coupled plasma-optical emission spectrometry. Results showed that the concentrations of bioavailable heavy metals declined in the order of Al, Fe, Zn, Cu, Co, Cd, Pb, and Cr, and the concentrations of total heavy metals declined in the order of Fe, Al, Cu, Zn, Pb, Cr, Co, and Cd. Principal component analysis (PCA) showed that heavy metals could be grouped into three principal components, with PC1 containing Al and Fe, PC2 comprising Cd, Co, Cr, and Cu, and PC3 with only Zn. PCA results showed that PC1 may originate from natural sources, whereas PC2 and PC3 most likely originated from anthropogenic sources. Health risk assessment indicated that heavy metal contamination in the Klang district was below the acceptable threshold for carcinogenic and non-carcinogenic risks in adults, but above the acceptable threshold for carcinogenic and non-carcinogenic risks in children.
    Matched MeSH terms: Carcinogens/analysis
  18. Low KS, Lee CK, Lee CY
    Appl Biochem Biotechnol, 2001 Jan;90(1):75-87.
    PMID: 11257809
    The potential of quaternized wood (QW) chips in removing hexavalent chromium from synthetic solution and chrome waste under both batch and continuous-flow conditions was investigated. Sorption was found to be dependent on pH, metal concentration, and temperature. QW chips provide higher sorption capacity and wider pH range compared with untreated wood chips. The equilibrium data could be fitted into the Langmuir isotherm model, and maximum sorption capacities were calculated to be 27.03 and 25.77 mg/g in synthetic chromate solution and chrome waste, respectively. The presence of sulfate in high concentration appeared to suppress the uptake of chromium by QW chips. Column studies showed that bed depth influenced the breakthrough time greatly whereas flow rate of influent had little effect on its sorption on the column.
    Matched MeSH terms: Carcinogens, Environmental/metabolism
  19. Low KS, Lee CK, Lee TS
    Environ Technol, 2003 Feb;24(2):197-204.
    PMID: 12675017
    Spent bleaching earth, an industrial waste produced after the bleaching of crude palm oil, was investigated for its potential in removing Cr(VI) from aqueous solution. The earth was treated with different amounts of sulfuric acid and under different activation temperatures. Results show that the optimum treatment process involved 10% sulfuric acid at 350 degrees C. The effects of contact time, pH, initial concentration, sorbent dosage, temperature, sorption isotherms and the presence of other anions on its sorption capacity were studied. Isotherm data could be fitted into a modified Langmuir isotherm model implying monolayer coverage of Cr(VI) on acid activated spent bleaching earth. The maximum sorption capacity derived from the Langmuir isotherm was 21.2 mg g(-1). This value was compared with those of some other low cost sorbents. Studies of anion effect on the uptake of Cr(VI) on acid activated spent bleaching earth provided the following order of suppression: EDTA >PO4(3-)>SO4(2-)>NO3(-)>Cl(-).
    Matched MeSH terms: Carcinogens, Environmental/chemistry*
  20. Norhanom AW, Yadav M
    Br. J. Cancer, 1995 Apr;71(4):776-9.
    PMID: 7710943
    Herbal medication has been practised by the rural Malaysian Malays for a long time. However, the long-term side-effects have never been studied. In the present study, 48 species of Euphorbiaceae were screened for tumour-promoter activity by means of an in vitro assay using a human lymphoblastoid cell line harbouring the Epstein-Barr virus (EBV) genome. Twenty-seven per cent (13 out of 48) of the species tested were found to be positive, and in four species, namely Breynia coronata Hk.f, Codiaeum variegatum (L) Bl, Euphorbia atoto and Exocoecaria agallocha, EBV-inducing activity was observed when the plant extracts were tested at low concentrations of between 0.2 and 1.2 micrograms ml-1 in cell culture. This observation warrants attention from the regular users of these plants because regular use of plants with tumour-promoting activity could well be an aetiological factor for the promotion of tumours among rural Malaysian Malays.
    Matched MeSH terms: Carcinogens*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links