Displaying publications 21 - 40 of 85 in total

Abstract:
Sort:
  1. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Bioorg Med Chem Lett, 2010 Dec 1;20(23):7064-6.
    PMID: 20951037 DOI: 10.1016/j.bmcl.2010.09.108
    Series of pyrolidine analogues were synthesized and examined as acetylcholinesterase (AChE) inhibitors. Among the compounds, compounds 4k and 6k were the most potent inhibitors of the series. Compound 4k, showed potent inhibitory activity against acetyl cholinesterase enzyme with IC(50) 0.10 μmol/L. Pyrolidine analogues might be potential acetyl cholinesterase agents for AD.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  2. Salleh WMNHW, Khamis S
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):467-471.
    PMID: 32469335 DOI: 10.1515/znc-2020-0075
    Chemical composition and anticholinesterase activity of the essential oil of Pavetta graciliflora Wall. ex Ridl. (Rubiaceae) was examined for the first time. The essential oil was obtained by hydrodistillation and was fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). A total of 20 components were identified in the essential oil, which made up 92.85% of the total oil. The essential oil is composed mainly of β-caryophyllene (42.52%), caryophyllene oxide (25.33%), β-pinene (8.67%), and α-pinene (6.52%). The essential oil showed weak inhibitory activity against acetylcholinesterase (AChE) (I%: 62.5%) and butyrylcholinesterase (BChE) (I%: 65.4%) assays. Our findings were shown to be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from P. graciliflora.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  3. Riswanto FDO, Rawa MSA, Murugaiyah V, Salin NH, Istyastono EP, Hariono M, et al.
    Med Chem, 2021;17(5):442-452.
    PMID: 31808389 DOI: 10.2174/1573406415666191206095032
    BACKGROUND: Chalcones, originated from natural product, have been broadly studied their biological activity against various proteins which at the molecular level, are responsible for the progress of the diseases in cancer (e.g. kinases), inflammation (oxidoreductases), atherosclerosis (cathepsins receptor), and diabetes (e.g. α-glucosidase).

    OBJECTIVE: Here we synthesize 10 chalcone derivatives to be evaluated their in vitro enzymatic inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).

    METHODS: The synthesis was carried out using Claissen-Schimdt condensation and the in vitro assay was conducted using Ellman Method.

    RESULTS: Compounds 2b and 4b demonstrated as the best IC50 of 9.3 μM and 68.7 μM respectively, towards AChE and BChE inhibition. Molecular docking studies predicted that this activity might be due to the interaction of the chalcones with important amino acid residues in the binding site of AChE such as SER200 and in that of BChE, such as TRP82, SER198, TRP430, TYR440, LEU286 and VAL288.

    CONCLUSION: Chalcone can be used as the scaffold for cholinesterase inhibitor, in particularly either fluorine or nitro group to be augmented at the para-position of Ring B, whereas the hydrophobic chain is necessary at the meta-position of Ring B.

    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  4. McGuire JR, Bester SM, Guelta MA, Cheung J, Langley C, Winemiller MD, et al.
    Chem Res Toxicol, 2021 03 15;34(3):804-816.
    PMID: 33538594 DOI: 10.1021/acs.chemrestox.0c00406
    The recent use of organophosphate nerve agents in Syria, Malaysia, Russia, and the United Kingdom has reinforced the potential threat of their intentional release. These agents act through their ability to inhibit human acetylcholinesterase (hAChE; E.C. 3.1.1.7), an enzyme vital for survival. The toxicity of hAChE inhibition via G-series nerve agents has been demonstrated to vary widely depending on the G-agent used. To gain insight into this issue, the structures of hAChE inhibited by tabun, sarin, cyclosarin, soman, and GP were obtained along with the inhibition kinetics for these agents. Through this information, the role of hAChE active site plasticity in agent selectivity is revealed. With reports indicating that the efficacy of reactivators can vary based on the nerve agent inhibiting hAChE, human recombinatorially expressed hAChE was utilized to define these variations for HI-6 among various G-agents. To identify the structural underpinnings of this phenomenon, the structures of tabun, sarin, and soman-inhibited hAChE in complex with HI-6 were determined. This revealed how the presence of G-agent adducts impacts reactivator access and placement within the active site. These insights will contribute toward a path of next-generation reactivators and an improved understanding of the innate issues with the current reactivators.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  5. Ahmad H, Ahmad S, Shah SAA, Khan HU, Khan FA, Ali M, et al.
    J Asian Nat Prod Res, 2018 Feb;20(2):172-181.
    PMID: 28463565 DOI: 10.1080/10286020.2017.1319820
    New lycoctonine-type dual cholinesterase inhibitor, swatinine-C (1), along with three known norditerpenoid alkaloids, hohenackerine (2), aconorine (5) and lappaconitine (6) and two synthetically known but phytochemically new benzene derivatives, methyl 2-acetamidobenzoate (3) and methyl 4-[2-(methoxycarbonyl)anilino]-4-oxobutanoate (4), was isolated from the roots of A. laeve. Structures of new and known compounds (1-6) were established on the basis of latest spectroscopic techniques and by close comparison with the data available in literature. In vitro, compounds (1-6) were tested against AChE and BChE inhibitory activities. Compounds 1 and 2 showed competitive inhibition against AChE (IC50 = 3.7 μM, 4.53 μM) and BChE (IC50 = 12.23 μM, 9.94 μM), respectively. Compounds 5 and 6 showed promising noncompetitive type of inhibitory profile against AChE (IC50 = 2.51 and 6.13 μM) only. Compounds 3 and 4 showed weak inhibitory profile against both AChE and BChE.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  6. Kwong HC, Mah SH, Chia TS, Quah CK, Lim GK, Kumar CSC
    Molecules, 2017 Jun 17;22(6).
    PMID: 28629119 DOI: 10.3390/molecules22061005
    Adamantyl-based compounds are clinically important for the treatments of type 2 diabetes and for their antiviral abilities, while many more are under development for other pharmaceutical uses. This study focused on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of adamantyl-based ester derivatives with various substituents on the phenyl ring using Ellman's colorimetric method. Compound 2e with a 2,4-dichloro electron-withdrawing substituent on the phenyl ring exhibited the strongest inhibition effect against AChE, with an IC50 value of 77.15 µM. Overall, the adamantyl-based ester with the mono-substituent at position 3 of the phenyl ring exhibited good AChE inhibition effects with an ascending order for the substituents: Cl < NO₂ < CH₃ < OCH₃. Furthermore, compounds with electron-withdrawing groups (Cl and NO₂) substituted at position 3 on their phenyl rings demonstrated stronger AChE inhibition effects, in comparison to their respective positional isomers. On the other hand, compound 2j with a 3-methoxyphenyl ring showed the highest inhibition effect against BChE, with an IC50 value of 223.30 µM. Molecular docking analyses were conducted for potential AChE and BChE inhibitors, and the results demonstrated that the peripheral anionic sites of target proteins were predominant binding sites for these compounds through hydrogen bonds and halogen interactions instead of hydrophobic interactions in the catalytic active site.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  7. Hassan M, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hussain G, Shah SAA, et al.
    J Theor Biol, 2018 12 07;458:169-183.
    PMID: 30243565 DOI: 10.1016/j.jtbi.2018.09.018
    A new series of multifunctional amides has been synthesized having moderate enzyme inhibitory potentials and mild cytotoxicity. 2-Furyl(1-piperazinyl)methanone (1) was coupled with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) to form {4-[(3,5-dichloro-2-hydroxyphenyl)sulfonyl]-1-piperazinyl}(2-furyl)methanone (3). Different elecrophiles were synthesized by the reaction of various un/substituted anilines (4a-o) with 2-bromoacetylbromide (5), 2‑bromo‑N-(un/substituted-phenyl)acetamides (6a-o). Further, equimolar ratios of 3 and 6a-o were allowed to react in the presence of K2CO3 in acetonitrile to form desired multifunctional amides (7a-o). The structural confirmation of all the synthesized compounds was carried out by their EI-MS, IR, 1H NMR and 13C NMR spectral data. Enzyme inhibition activity was performed against acetyl and butyrylcholinestrase enzymes, whereby 7e showed very good activity having IC50 value of 5.54 ± 0.03 and 9.15 ± 0.01 μM, respectively, relative to eserine, a reference standard. Hemolytic activity of the molecules was checked to asertain their cytotoxicity towards red blood cell membrance and it was observed that most of the compounds were not toxic up to certain range. Moreover, chemoinformatic protepties and docking simulation results also showed the significance of 7e as compared to other compounds. Based on in vitro and in silico analysis 7e could be used as a template for the development of new drugs against Alzheimer's disease.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  8. Parambi DGT, Aljoufi F, Murugaiyah V, Mathew GE, Dev S, Lakshminarayanan B, et al.
    PMID: 30451121 DOI: 10.2174/1871524918666181119114016
    BACKGROUND: Dual-acting human monoamine oxidase B (hMAO-B) and cholinesterase (ChE) inhibitors are more effective than the classic one-drug one-target therapy for Alzheimer's disease (AD).

    METHODS: The ChE inhibitory ability of some halogenated thiophene chalcone-based molecules known to be selective hMAO-B inhibitors was evaluated.

    RESULTS: Based on the IC50 values, the selected compounds were found to moderately inhibit ChE, with IC50 values in the range of 14-70 µM. Among the synthesised molecules, T8 and T6 showed the most potent inhibitory activity against AChE and BChE, respectively.

    CONCLUSION: Taken together, the data revealed that T8 could be further optimized to enhance its AChE inhibitory activity.

    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  9. Mirza FJ, Zahid S, Amber S, Sumera, Jabeen H, Asim N, et al.
    Molecules, 2022 Oct 25;27(21).
    PMID: 36364071 DOI: 10.3390/molecules27217241
    Alzheimer's disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aβ) aggregation and impaired synaptic transmission, which makes the associated proteins, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  10. Vanessa VV, Mah SH
    Mini Rev Med Chem, 2021;21(17):2507-2529.
    PMID: 33583373 DOI: 10.2174/1389557521666210212152514
    Alzheimer's disease is a neurodegenerative disorder that results in progressive and irreversible central nervous system impairment, which has become one of the severe issues recently. The most successful approach of Alzheimer's treatment is the administration of cholinesterase inhibitors to prevent the hydrolysis of acetylcholine and subsequently improve cholinergic postsynaptic transmission. This review highlights a class of heterocycles, namely xanthone, and its remarkable acetylcholinesterase inhibitory activities. Naturally occurring xanthones, including oxygenated, prenylated, pyrano, and glycosylated xanthones, exhibited promising inhibition effects towards acetylcholinesterase. Interestingly, synthetic xanthone derivatives with complex substituents such as alkyl, pyrrolidine, piperidine, and morpholine have shown greater acetylcholinesterase inhibition activities. The structure-activity relationship of xanthones revealed that the type and position of the substituent(s) attached to the xanthone moiety influenced acetylcholinesterase inhibition activities where hydrophobic moiety will lead to an improved activity by contributing to the π-π interactions, as well as the hydroxy substituent(s) by forming hydrogen-bond interactions. Thus, further studies, including quantitative structure-activity relationship, in vivo and clinical validation studies are crucial for the development of xanthones into novel anti-Alzheimer's disease drugs.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  11. Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):627-639.
    PMID: 33557647 DOI: 10.1080/14756366.2021.1882452
    A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  12. Sukumaran SD, Nasir SB, Tee JT, Buckle MJC, Othman R, Rahman NA, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):130-137.
    PMID: 33243025 DOI: 10.1080/14756366.2020.1847100
    A series of C4-substituted tertiary nitrogen-bearing 2'-hydroxychalcones were designed and synthesised based on a previous mixed type acetylcholinesterase inhibitor. Majority of the 2'-hydroxychalcone analogues displayed a better inhibition against acetylcholinesterase (AChE) than butyrylcholinesterase (BuChE). Among them, compound 4c was identified as the most potent AChE inhibitor (IC50: 3.3 µM) and showed the highest selectivity for AChE over BuChE (ratio >30:1). Molecular docking studies suggested that compound 4c interacts with both the peripheral anionic site (PAS) and catalytic anionic site (CAS) regions of AChE. ADMET analysis confirmed the therapeutic potential of compound 4c based on its blood-brain barrier penetrating. Overall, the results suggest that this 2'-hydroxychalcone deserves further investigation into the therapeutic lead for Alzheimer's disease (AD).
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  13. Yusoff M, Hamid H, Houghton P
    Molecules, 2014 Jan 20;19(1):1201-11.
    PMID: 24448061 DOI: 10.3390/molecules19011201
    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  14. Husna Hasnan MH, Sivasothy Y, Khaw KY, Nafiah MA, Hazni H, Litaudon M, et al.
    Int J Mol Sci, 2023 Jun 27;24(13).
    PMID: 37445877 DOI: 10.3390/ijms241310699
    Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  15. Jamila N, Yeong KK, Murugaiyah V, Atlas A, Khan I, Khan N, et al.
    Nat Prod Res, 2015;29(1):86-90.
    PMID: 25219673 DOI: 10.1080/14786419.2014.952228
    Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (1-4) exhibited dual and moderate inhibitory activities against AChE and BChE.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  16. Mogana R, Adhikari A, Debnath S, Hazra S, Hazra B, Teng-Jin K, et al.
    Biomed Res Int, 2014;2014:903529.
    PMID: 24949478 DOI: 10.1155/2014/903529
    In continuation of our natural and medicinal research programme on tropical rainforest plants, a bioassay guided fractionation of ethanolic extract of leaves of Canarium patentinervium Miq. (Burseraceae Kunth.) led to the isolation of scopoletin (1), scoparone (2), (+)-catechin (3), vomifoliol (4), lioxin (5), and syringic acid (6). All the compounds exhibited antiacetylcholinesterase activity with syringic acid, a phenolic acid exhibiting good AChE inhibition (IC50 29.53 ± 0.19 μ g/mL). All compounds displayed moderate antileishmanial activity with scopoletin having the highest antileishmanial activity (IC50 163.30 ± 0.32 μ g/mL). Given the aforementioned evidence, it is tempting to speculate that Canarium patentinervium Miq. represents an exciting scaffold from which to develop leads for treatment of neurodegenerative and parasitic diseases.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry
  17. Jamila N, Khairuddean M, Yeong KK, Osman H, Murugaiyah V
    J Enzyme Inhib Med Chem, 2015 Feb;30(1):133-9.
    PMID: 24666300 DOI: 10.3109/14756366.2014.895720
    Context: Garcinia hombroniana Pierre, known as manggis hutan in Malaysia is a rich source of xanthones and benzophenones.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  18. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Hooda A, et al.
    Bioorg Med Chem, 2014 Jan 15;22(2):906-16.
    PMID: 24369842 DOI: 10.1016/j.bmc.2013.11.020
    Novel thiazolopyrimidine derivatives have been synthesized via microwave assisted, domino cascade methodology in ionic liquid and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Among the newly synthesized compounds 6d, 6a, 6e and 6b displayed higher AChE inhibitory activity than standard drug, galanthamine, with IC50 values of 0.53, 1.47, 1.62 and 2.05μM, respectively. Interestingly, all the compounds except for 6m-r and 6x displayed higher BChE inhibitory potentials than galanthamine with IC50 values ranging from 1.09 to 18.56μM. Molecular docking simulations for 6d possessing the most potent AChE and BChE inhibitory activities, disclosed its binding interactions at the active site gorge of AChE and BChE enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  19. Mazlan NA, Mediani A, Abas F, Ahmad S, Shaari K, Khamis S, et al.
    ScientificWorldJournal, 2013;2013:312741.
    PMID: 24319356 DOI: 10.1155/2013/312741
    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
  20. Kia Y, Osman H, Kumar RS, Murugaiyah V, Basiri A, Khaw KY, et al.
    Med Chem, 2014;10(5):512-20.
    PMID: 24138113
    A series of hitherto unreported piperidone embedded α,β-unsaturated ketones were synthesized efficiently in ionic solvent and evaluated for cholinesterase inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most of the synthesized compounds displayed good enzyme inhibition; therein compounds 7i and 7f displayed significant activity against AChE with IC50 values of 1.47 and 1.74 µM, respectively. Compound 6g showed the highest BChE inhibitory potency with IC50 value of 3.41 µM, being 5 times more potent than galanthamine. Molecular modeling simulation was performed using AChE and BChE receptors extracted from crystal structure of human AChE and human BChE to determine the amino acid residues involved in the binding interaction of synthesized compounds and their relevant receptors.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links