Displaying publications 21 - 40 of 605 in total

Abstract:
Sort:
  1. Rusni IM, Ismail A, Alhawari AR, Hamidon MN, Yusof NA
    Sensors (Basel), 2014 Jul 21;14(7):13134-48.
    PMID: 25051036 DOI: 10.3390/s140713134
    This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR) for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.
    Matched MeSH terms: Computer Simulation
  2. Moosavi SMH, Ismail A, Yuen CW
    PLoS One, 2020;15(5):e0232799.
    PMID: 32379848 DOI: 10.1371/journal.pone.0232799
    Bus services naturally tend to be unstable and are not always capable of adhering to schedules without control strategies. Therefore, bus users and bus service providers face travel time variation and irregularity. After a comprehensive review of the literature, a significant gap was recognized in the field of public transportation reliability. According to literature, there is no consistency in reliability definition and indicators. Companies have their own definition of bus service reliability, and they mostly neglect the passengers' perspective of reliability. Therefore, four reliability indicators were selected in this study to fill the gap in the literature and cover both passengers' and operators' perceptions of reliability: waiting time and on-board crowding level from passengers' perspective, and headway regularity index at stops (HRIS) and bus bunching/big gap percentage from operators' perspective. The primary objective of this research is to improve the reliability of high frequency of bus service and simulation tools currently being used by the public transportation companies. Therefore, a simulation model of bus service was developed to study the strategies to alleviate it. Four different types of strategies were selected and implemented according to Route U32 (Kuala Lumpur) specifications. Model out-put showed that control strategies such as headway-based dispatching could significantly improve headway regularity by almost 62% and the waiting time by 51% on average. Both holding strategies at key stops (previous and Prefol holding) have shown an almost similar impact on reliability indicators. Waiting time was reduced by 44% and 43% after the previous and Prefol Headway strategies were adopted, respectively. However, the implementation of the component of headway-based strategies at the terminal and key stops showed the best impact on reliability, in terms of passenger waiting time. Waiting time and excess waiting time were both significantly reduced by 52.86% and 81.44%, respectively. Nevertheless, the strategies did not show any significant positive effect on the level of crowding during morning peak hours.
    Matched MeSH terms: Computer Simulation
  3. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
    Matched MeSH terms: Computer Simulation
  4. Loader NJ, Walsh RP, Robertson I, Bidin K, Ong RC, Reynolds G, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3330-9.
    PMID: 22006972 DOI: 10.1098/rstb.2011.0037
    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
    Matched MeSH terms: Computer Simulation
  5. Mohamad MS, Omatu S, Deris S, Yoshioka M
    IEEE Trans Inf Technol Biomed, 2011 Nov;15(6):813-22.
    PMID: 21914573 DOI: 10.1109/TITB.2011.2167756
    Gene expression data are expected to be of significant help in the development of efficient cancer diagnoses and classification platforms. In order to select a small subset of informative genes from the data for cancer classification, recently, many researchers are analyzing gene expression data using various computational intelligence methods. However, due to the small number of samples compared to the huge number of genes (high dimension), irrelevant genes, and noisy genes, many of the computational methods face difficulties to select the small subset. Thus, we propose an improved (modified) binary particle swarm optimization to select the small subset of informative genes that is relevant for the cancer classification. In this proposed method, we introduce particles' speed for giving the rate at which a particle changes its position, and we propose a rule for updating particle's positions. By performing experiments on ten different gene expression datasets, we have found that the performance of the proposed method is superior to other previous related works, including the conventional version of binary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also produces lower running times compared to BPSO.
    Matched MeSH terms: Computer Simulation
  6. Chew KM, Seman N, Sudirman R, Yong CY
    Biomed Mater Eng, 2014;24(6):2161-7.
    PMID: 25226914 DOI: 10.3233/BME-141027
    The development of human-like brain phantom is important for data acquisition in microwave imaging. The characteristics of the phantom should be based on the real human body dielectric properties such as relative permittivity. The development of phantom includes the greymatter and whitematter regions, each with a relative permittivity of 38 and 28 respectively at 10 GHz frequency. Results were compared with the value obtained from the standard library of Computer Simulation Technology (CST) simulation application and the existing research by Fernandez and Gabriel. Our experimental results show a positive outcome, in which the proposed mixture was adequate to represent real human brain for data acquisition.
    Matched MeSH terms: Computer Simulation
  7. Chew KM, Sudirman R, Seman N, Yong CY
    Biomed Mater Eng, 2014;24(1):199-207.
    PMID: 24211899 DOI: 10.3233/BME-130800
    The study was conducted based on two objectives as framework. The first objective is to determine the point of microwave signal reflection while penetrating into the simulation models and, the second objective is to analyze the reflection pattern when the signal penetrate into the layers with different relative permittivity, εr. Thus, several microwave models were developed to make a close proximity of the in vivo human brain. The study proposed two different layers on two different characteristics models. The radii on the second layer and the corresponding antenna positions are the factors for both models. The radii for model 1 is 60 mm with an antenna position of 10 mm away, in contrast, model 2 is 10 mm larger in size with a closely adapted antenna without any gap. The layers of the models were developed with different combination of materials such as Oil, Sandy Soil, Brain, Glycerin and Water. Results show the combination of Glycerin + Brain and Brain + Sandy Soil are the best proximity of the in vivo human brain grey and white matter. The results could benefit subsequent studies for further enhancement and development of the models.
    Matched MeSH terms: Computer Simulation
  8. Xie D, Yin C
    Comput Intell Neurosci, 2022;2022:8965622.
    PMID: 35111216 DOI: 10.1155/2022/8965622
    Shaanxi is one of China's most important cradles of civilization. The main vein of Chinese culture is rich history and culture, and brilliant red culture embodies the essence of socialist core values. It is still relatively weak to deeply analyze the related research of Shaanxi Province's cultural province construction on the basis of studying the achievements of cultural development in foreign countries and China and combining with the reality of Shaanxi Province. In this paper, a BPNN (BP neural network) model is selected to study the comprehensive evaluation of tourism competitiveness of smart tourism cities, and the software is used to realize the simulation of the comprehensive evaluation system of tourism competitiveness of smart tourism cities, which more comprehensively and objectively reflects the level of comprehensive competitiveness of each city. It is believed that there are some problems in Shaanxi regional cultural communication, such as insufficient exploration of content resources, insufficient communication channels, and low audience awareness, hoping to provide ideas and reference for further exploring the promotion of cultural communication power.
    Matched MeSH terms: Computer Simulation
  9. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Computer Simulation
  10. Oroji A, Omar M, Yarahmadian S
    J Theor Biol, 2016 10 21;407:128-137.
    PMID: 27457094 DOI: 10.1016/j.jtbi.2016.07.035
    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population.
    Matched MeSH terms: Computer Simulation
  11. Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, et al.
    Arch Pharm (Weinheim), 2021 Jan;354(1):e2000161.
    PMID: 32886410 DOI: 10.1002/ardp.202000161
    A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
    Matched MeSH terms: Computer Simulation
  12. Toosi S, Misron N, Hanamoto T, Bin Aris I, Radzi MA, Yamada H
    ScientificWorldJournal, 2014;2014:645734.
    PMID: 25298969 DOI: 10.1155/2014/645734
    This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation.
    Matched MeSH terms: Computer Simulation
  13. Walters K, Yaacob H
    Genet Epidemiol, 2023 Apr;47(3):249-260.
    PMID: 36739616 DOI: 10.1002/gepi.22517
    Currently, the only effect size prior that is routinely implemented in a Bayesian fine-mapping multi-single-nucleotide polymorphism (SNP) analysis is the Gaussian prior. Here, we show how the Laplace prior can be deployed in Bayesian multi-SNP fine mapping studies. We compare the ranking performance of the posterior inclusion probability (PIP) using a Laplace prior with the ranking performance of the corresponding Gaussian prior and FINEMAP. Our results indicate that, for the simulation scenarios we consider here, the Laplace prior can lead to higher PIPs than either the Gaussian prior or FINEMAP, particularly for moderately sized fine-mapping studies. The Laplace prior also appears to have better worst-case scenario properties. We reanalyse the iCOGS case-control data from the CASP8 region on Chromosome 2. Even though this study has a total sample size of nearly 90,000 individuals, there are still some differences in the top few ranked SNPs if the Laplace prior is used rather than the Gaussian prior. R code to implement the Laplace (and Gaussian) prior is available at https://github.com/Kevin-walters/lapmapr.
    Matched MeSH terms: Computer Simulation
  14. Chen X, Zheng L, Xu Y
    J Environ Public Health, 2022;2022:2700957.
    PMID: 35978586 DOI: 10.1155/2022/2700957
    Under the restriction of ecological and environmental factors, our requirements have improved for the development path of gymnasium construction. According to the previous way to carry out the development path of gymnasium construction will make our construction work encounter a lot of unnecessary troubles, so we can improve the success rate of the development path of gymnasium construction under the constraints of the ecological environment by carrying out relevant evasive operations according to the constraints of ecological environment. The topological path and path algorithm used to improve the efficiency of stadium construction and development path under the constraints of ecological environment, TEG algorithm, Q-TEG model, Q-TEG algorithm, Dtra algorithm, TraD algorithm, ResR algorithm, and Q-TED algorithm used in resource reservation plus time slot plus hosting bring the following advantages: (1) we use topological path and path algorithm to explore topological representation methods suitable for development path. The overview provides a theoretical basis for guidance, for forwarding technology scheduling mechanisms and multi-path forwarding mechanisms to provide higher flexibility. (2) We use the TEG algorithm of resource reservation plus time slot plus trusteeship, Q-TEG model, and Q-TEG algorithm under multi-model model can deal with the capacity and link of queue in each stadium construction development path well. It is more convenient to set the packet loss threshold for the propagation experiment tested in the simulation. Better help gymnasium construction and development path transmission is successful. (3) The use of the Dtra algorithm, TraD algorithm, ResR algorithm, and Q-TED algorithm in our stadium construction development path of a good deal of the transmission link structure between each node, so that the transmission efficiency between nodes becomes higher, making our stadium construction development path operation more efficient and convenient.
    Matched MeSH terms: Computer Simulation
  15. Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, et al.
    Sci Rep, 2015 Dec 14;5:17928.
    PMID: 26655688 DOI: 10.1038/srep17928
    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
    Matched MeSH terms: Computer Simulation
  16. Goh KB, Li Z, Chen X, Liu Q, Wu T
    J Colloid Interface Sci, 2022 Feb 15;608(Pt 2):1999-2008.
    PMID: 34749148 DOI: 10.1016/j.jcis.2021.10.092
    HYPOTHESIS: The performance of a polymeric core-shell microreactor depends critically on (i) mass transfer, (ii) catalyzed chemical reaction, and (iii) deactivation within the nonuniform core-shell microstructure environment. As such, these three basic working principles control the active catalytic phase density in the reactor.

    THEORY: We present a high-fidelity, image-based nonequilibrium computational model to quantify and visualize the mass transport as well as the deactivation process of a core-shell polymeric microreactor. In stark contrast with other published works, our microstructure-based computer simulation can provide a single-particle visualization with a micrometer spatial accuracy.

    FINDINGS: We show how the interplay of kinetics and thermodynamics controls the product-induced deactivation process. The model predicts and visualizes the non-trivial, spatially resolved active catalyst phase patterns within a core-shell system. Moreover, we also show how the microstructure influences the formation of foulant within a core-shell structure; that is, begins from the core and grows radially onto the shell section. Our results suggest that the deactivation process is highly governed by the porosity/microstructure of the microreactor as well as the affinity of the products towards the solid phase of the reactor.

    Matched MeSH terms: Computer Simulation*
  17. Ding R, Ujang N, Hamid HB, Wu J
    PLoS One, 2015;10(10):e0139961.
    PMID: 26448645 DOI: 10.1371/journal.pone.0139961
    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.
    Matched MeSH terms: Computer Simulation
  18. Wang S, Liu Q, Liu Y, Jia H, Abualigah L, Zheng R, et al.
    Comput Intell Neurosci, 2021;2021:6379469.
    PMID: 34531910 DOI: 10.1155/2021/6379469
    Based on Salp Swarm Algorithm (SSA) and Slime Mould Algorithm (SMA), a novel hybrid optimization algorithm, named Hybrid Slime Mould Salp Swarm Algorithm (HSMSSA), is proposed to solve constrained engineering problems. SSA can obtain good results in solving some optimization problems. However, it is easy to suffer from local minima and lower density of population. SMA specializes in global exploration and good robustness, but its convergence rate is too slow to find satisfactory solutions efficiently. Thus, in this paper, considering the characteristics and advantages of both the above optimization algorithms, SMA is integrated into the leader position updating equations of SSA, which can share helpful information so that the proposed algorithm can utilize these two algorithms' advantages to enhance global optimization performance. Furthermore, Levy flight is utilized to enhance the exploration ability. It is worth noting that a novel strategy called mutation opposition-based learning is proposed to enhance the performance of the hybrid optimization algorithm on premature convergence avoidance, balance between exploration and exploitation phases, and finding satisfactory global optimum. To evaluate the efficiency of the proposed algorithm, HSMSSA is applied to 23 different benchmark functions of the unimodal and multimodal types. Additionally, five classical constrained engineering problems are utilized to evaluate the proposed technique's practicable abilities. The simulation results show that the HSMSSA method is more competitive and presents more engineering effectiveness for real-world constrained problems than SMA, SSA, and other comparative algorithms. In the end, we also provide some potential areas for future studies such as feature selection and multilevel threshold image segmentation.
    Matched MeSH terms: Computer Simulation
  19. Wang X, Walker A, Revez JA, Ni G, Adams MJ, McIntosh AM, et al.
    Am J Hum Genet, 2023 Jul 06;110(7):1207-1215.
    PMID: 37379836 DOI: 10.1016/j.ajhg.2023.06.006
    In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
    Matched MeSH terms: Computer Simulation
  20. Tan C, Seet G, Sluzek A, Wang X, Yuen CT, Fam CY, et al.
    Opt Express, 2010 Sep 27;18(20):21147-54.
    PMID: 20941011 DOI: 10.1364/OE.18.021147
    The range-gated imaging systems are reliable underwater imaging system with the capability to minimize backscattering effect from turbid media. The tail-gating technique has been developed to fine tune the signal to backscattering ratio and hence improve the gated image quality. However, the tail-gating technique has limited image quality enhancement in high turbidity levels. In this paper, we developed a numerical model of range-gated underwater imaging system for near target in turbid medium. The simulation results matched the experimental work favorably. Further investigation using this numerical model shows that the multiple scattering components of the backscattering noise dominate for propagation length larger than 4.2 Attenuation Length (AL). This has limited the enhancement of tail-gating technique in high turbidity conditions.
    Matched MeSH terms: Computer Simulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links