Methods: A systematic review and network meta-analysis was performed; searches of the Cochrane Library, PubMed, Embase, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) included all randomized controlled trials and observational studies conducted in adult patients hospitalized in ICUs and evaluating standard care (STD), antimicrobial stewardship program (ASP), environmental cleaning (ENV), decolonization methods (DCL), or source control (SCT), simultaneously. The primary outcomes were MDR-GNB acquisition, colonization, and infection; secondary outcome was ICU mortality.
Results: Of 3805 publications retrieved, 42 met inclusion criteria (5 randomized controlled trials and 37 observational studies), involving 62068 patients (median age, 58.8 years; median APACHE [Acute Physiology and Chronic Health Evaluation] II score, 18.9). The majority of studies reported extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and MDR Acinetobacter baumannii. Compared with STD, a 4-component strategy composed of STD, ASP, ENV, and SCT was the most effective intervention (rate ratio [RR], 0.05 [95% confidence interval {CI}, .01-.38]). When ENV was added to STD+ASP or SCT was added to STD+ENV, there was a significant reduction in the acquisition of MDR A. baumannii (RR, 0.28 [95% CI, .18-.43] and 0.48 [95% CI, .35-.66], respectively). Strategies with ASP as a core component showed a statistically significant reduction the acquisition of ESBL-producing Enterobacteriaceae (RR, 0.28 [95% CI, .11-.69] for STD+ASP+ENV and 0.23 [95% CI, .07-.80] for STD+ASP+DCL).
Conclusions: A 4-component strategy was the most effective intervention to prevent MDR-GNB acquisition. As some strategies were differential for certain bacteria, our study highlighted the need for further evaluation of the most effective prevention strategies.
Methods: This study, stratified in pre-, during, and post-intervention periods, was conducted between February 2017 and March 2018 in two wards at a tertiary care hospital in Malaysia. Hand hygiene promotion was facilitated either by PICAs (study arm 1) or MSCAs (study arm 2), and the two wards were randomly allocated to one of the two interventions. Outcomes were: 1) perceived leadership styles of PICAs and MSCAs by staff, vocalised during question and answer sessions; 2) the social network connectedness and communication patterns between HCWs and change agents by applying social network analysis; and 3) hand hygiene leadership attributes obtained from HCWs in the post-intervention period by questionnaires.
Results: Hand hygiene compliance in study arm 1 and study arm 2 improved by from 48% (95% CI: 44-53%) to 66% (63-69%), and from 50% (44-55%) to 65% (60-69%), respectively. There was no significant difference between the two arms. Healthcare workers perceived that PICAs lead by example, while MSCAs applied an authoritarian top-down leadership style. The organisational culture of both wards was hierarchical, with little social interaction, but strong team cohesion. Position and networks of both PICAs and MSCAs were similar and generally weaker compared to the leaders who were nominated by HCWs in the post-intervention period. Healthcare workers on both wards perceived authoritative leadership to be the most desirable attribute for hand hygiene improvement.
Conclusion: Despite experiencing successful hand hygiene improvement from PICAs, HCWs expressed a preference for the existing top-down leadership structure. This highlights the limits of applying leadership models that are not supported by the local organisational culture.