METHODS AND RESULTS: The library of 16S rDNA V3-V4 hypervariable regions of gut microbiota was amplified and sequenced using Illumina MiSeq. The sequencing data were analyzed using Quantitative Insights into Microbial Ecology (QIIME) pipeline and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The most abundant bacterial phyla in both wild and captive T. tambroides were Firmicutes, Proteobacteria, Fusobacteria and Bacteroidetes. Cetobacterium spp., Peptostreptococcaceae family, Bacteroides spp., Phosphate solubilizing bacteria PSB-M-3, and Vibrio spp. were five most abundant OTU in wild T. tambroides as compared to Cetobacterium spp., Citrobacter spp., Aeromonadaceae family, Peptostreptococcaceae family and Turicibacter spp. in captive T. tambroides.
CONCLUSION: In this study, the specimens of the wild T. tambroides contain more diverse gut microbiota than of the captive ones. The results suggested that Cetobacterium spp. is one of the core microbiota in guts of T. tambroides. Besides, high abundant Bacteroides spp., Citrobacter spp., Turicibacter spp., and Bacillus spp. may provide important functions in T. tambroides guts.
SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study provide significant information of T. tambroides gut microbiota for further understanding of their physiological functions including growth and disease resistance.
METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.
RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.
CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.