METHOD: Data were obtained from 36 members of COSMIC, representing 28 countries across 6 continents (HICs: Australia, Canada, Faroe Islands, France, Germany, Greece, Italy, Japan, Netherlands, South Korea, Spain, Sweden, & USA; LMICs: Brazil, China, Cuba, Dominican Republic, Ecuador, Indonesia, Malaysia, Mexico, Nigeria, Peru, Philippines, Republic of Congo, & Tanzania). For each member study, we calculated incidence rates for all-cause dementia. Findings from 14 studies, with a consensus diagnosis are presented in the results. Using an Item Response Theory approach, we are currently calculating a comparable incidence rate for those studies without a consensus diagnosis.
RESULT: Consistent with previous trends, incidence rates (per 100 person-years) increased with age, from 65-70 years-old to 85-90 years-old, for both males (i.e., Republic of Congo, 4.41 to 19.57; France, 0.46 to 3.89; USA, 0.17 to 3.22; Spain, 0.31 to 4.22; 65-70 & 85-90 cohorts respectively) and females (i.e., Republic of Congo, 3.57 to 15.31; France, 0.45 to 3.72; USA, 0.22 to 4.25; Spain, 0.36 to 4.96; 65-70 & 85-90 cohorts respectively). There were no sex differences in incidence rates in younger age groups (60-65). Among older age groups, however, women tended to have higher incidence rates than men, in some countries (Faroe Islands, Germany, Sweden, and USA).
CONCLUSION: Geographical differences in dementia incidence rates likely represent inherent variation among countries, beyond methodological considerations. We are working to expand the range of studies and regions for which we calculate dementia incidence rates. This involves the development of approaches to classify and harmonise incident dementia in studies lacking consensus diagnoses. Doing so will bolster LMIC representation.
METHODS: In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorised as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family.
FINDINGS: Recruitment to the study began on Jan 12, 2001, with most participants enrolled between Jan 6, 2005, and Dec 4, 2014. 160 299 (87·9%) of 182 375 participants with baseline data had available follow-up event data and were eligible for inclusion. After exclusion of 6130 (3·8%) participants without complete baseline or follow-up data, 154 169 individuals remained for analysis, from five low-income, 11 middle-income, and four high-income countries. Participants were followed-up for a mean of 7·5 years. Major cardiovascular events were more common among those with low levels of education in all types of country studied, but much more so in low-income countries. After adjustment for wealth and other factors, the HR (low level of education vs high level of education) was 1·23 (95% CI 0·96-1·58) for high-income countries, 1·59 (1·42-1·78) in middle-income countries, and 2·23 (1·79-2·77) in low-income countries (pinteraction<0·0001). We observed similar results for all-cause mortality, with HRs of 1·50 (1·14-1·98) for high-income countries, 1·80 (1·58-2·06) in middle-income countries, and 2·76 (2·29-3·31) in low-income countries (pinteraction<0·0001). By contrast, we found no or weak associations between wealth and these two outcomes. Differences in outcomes between educational groups were not explained by differences in risk factors, which decreased as the level of education increased in high-income countries, but increased as the level of education increased in low-income countries (pinteraction<0·0001). Medical care (eg, management of hypertension, diabetes, and secondary prevention) seemed to play an important part in adverse cardiovascular disease outcomes because such care is likely to be poorer in people with the lowest levels of education compared to those with higher levels of education in low-income countries; however, we observed less marked differences in care based on level of education in middle-income countries and no or minor differences in high-income countries.
INTERPRETATION: Although people with a lower level of education in low-income and middle-income countries have higher incidence of and mortality from cardiovascular disease, they have better overall risk factor profiles. However, these individuals have markedly poorer health care. Policies to reduce health inequities globally must include strategies to overcome barriers to care, especially for those with lower levels of education.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
RESEARCH DESIGN AND METHODS: The Prospective Urban Rural Epidemiology (PURE) study enrolled 143,567 adults aged 35-70 years from 4 high-income countries (HIC), 12 middle-income countries (MIC), and 5 low-income countries (LIC). The mean follow-up was 9.0 ± 3.0 years.
RESULTS: Among those with diabetes, CVD rates (LIC 10.3, MIC 9.2, HIC 8.3 per 1,000 person-years, P < 0.001), all-cause mortality (LIC 13.8, MIC 7.2, HIC 4.2 per 1,000 person-years, P < 0.001), and CV mortality (LIC 5.7, MIC 2.2, HIC 1.0 per 1,000 person-years, P < 0.001) were considerably higher in LIC compared with MIC and HIC. Within LIC, mortality was higher in those in the lowest tertile of wealth index (low 14.7%, middle 10.8%, and high 6.5%). In contrast to HIC and MIC, the increased CV mortality in those with diabetes in LIC remained unchanged even after adjustment for behavioral risk factors and treatments (hazard ratio [95% CI] 1.89 [1.58-2.27] to 1.78 [1.36-2.34]).
CONCLUSIONS: CVD rates, all-cause mortality, and CV mortality were markedly higher among those with diabetes in LIC compared with MIC and HIC with mortality risk remaining unchanged even after adjustment for risk factors and treatments. There is an urgent need to improve access to care to those with diabetes in LIC to reduce the excess mortality rates, particularly among those in the poorer strata of society.
DESCRIPTION: COVID-19 directly affects pregnant women causing more severe disease and adverse pregnancy outcomes. The indirect effects due to the monumental COVID-19 response are much worse, increasing maternal and neonatal mortality.
ASSESSMENT: Amidst COVID-19, governments must balance effective COVID-19 response measures while continuing delivery of essential health services. Using the World Health Organization's operational guidelines as a base, countries must conduct contextualized analyses to tailor their operations. Evidence based information on different services and comparative cost-benefits will help decisions on trade-offs. Situational analyses identifying extent and reasons for service disruptions and estimates of impacts using modelling techniques will guide prioritization of services. Ensuring adequate supplies, maintaining core interventions, expanding non-physician workforce and deploying telehealth are some adaptive measures to optimize care. Beyond the COVID-19 pandemic, governments must reinvest in maternal and child health by building more resilient maternal health services supported by political commitment and multisectoral engagement, and with assistance from international partners.
CONCLUSIONS: Multi-sectoral investments providing high-quality care that ensures continuity and available to all segments of the population are needed. A robust primary healthcare system linked to specialist care and accessible to all segments of the population including marginalized subgroups is of paramount importance. Systematic approaches to digital health care solutions to bridge gaps in service is imperative. Future pandemic preparedness programs must include action plans for resilient maternal health services.
Objective: To assess whether sleep timing and napping behavior are associated with increased obesity, independent of nocturnal sleep length.
Design, Setting, and Participants: This large, multinational, population-based cross-sectional study used data of participants from 60 study centers in 26 countries with varying income levels as part of the Prospective Urban Rural Epidemiology study. Participants were aged 35 to 70 years and were mainly recruited during 2005 and 2009. Data analysis occurred from October 2020 through March 2021.
Exposures: Sleep timing (ie, bedtime and wake-up time), nocturnal sleep duration, daytime napping.
Main Outcomes and Measures: The primary outcomes were prevalence of obesity, specified as general obesity, defined as body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or greater, and abdominal obesity, defined as waist circumference greater than 102 cm for men or greater than 88 cm for women. Multilevel logistic regression models with random effects for study centers were performed to calculate adjusted odds ratios (AORs) and 95% CIs.
Results: Overall, 136 652 participants (81 652 [59.8%] women; mean [SD] age, 51.0 [9.8] years) were included in analysis. A total of 27 195 participants (19.9%) had general obesity, and 37 024 participants (27.1%) had abdominal obesity. The mean (SD) nocturnal sleep duration was 7.8 (1.4) hours, and the median (interquartile range) midsleep time was 2:15 am (1:30 am-3:00 am). A total of 19 660 participants (14.4%) had late bedtime behavior (ie, midnight or later). Compared with bedtime between 8 pm and 10 pm, late bedtime was associated with general obesity (AOR, 1.20; 95% CI, 1.12-1.29) and abdominal obesity (AOR, 1.20; 95% CI, 1.12-1.28), particularly among participants who went to bed between 2 am and 6 am (general obesity: AOR, 1.35; 95% CI, 1.18-1.54; abdominal obesity: AOR, 1.38; 95% CI, 1.21-1.58). Short nocturnal sleep of less than 6 hours was associated with general obesity (eg, <5 hours: AOR, 1.27; 95% CI, 1.13-1.43), but longer napping was associated with higher abdominal obesity prevalence (eg, ≥1 hours: AOR, 1.39; 95% CI, 1.31-1.47). Neither going to bed during the day (ie, before 8pm) nor wake-up time was associated with obesity.
Conclusions and Relevance: This cross-sectional study found that late nocturnal bedtime and short nocturnal sleep were associated with increased risk of obesity prevalence, while longer daytime napping did not reduce the risk but was associated with higher risk of abdominal obesity. Strategic weight control programs should also encourage earlier bedtime and avoid short nocturnal sleep to mitigate obesity epidemic.
Objective: To estimate changes in the prevalence of current tobacco use and socioeconomic inequalities among male and female participants from 22 sub-Saharan African countries from 2003 to 2019.
Design, Setting, and Participants: Secondary data analyses were conducted of sequential Demographic and Health Surveys in 22 sub-Saharan African countries including male and female participants aged 15 to 49 years. The baseline surveys (2003-2011) and the most recent surveys (2011-2019) were pooled.
Exposures: Household wealth index and highest educational level were the markers of inequality.
Main Outcomes and Measures: Sex-specific absolute and relative changes in age-standardized prevalence of current tobacco use in each country and absolute and relative measures of inequality using pooled data.
Results: The survey samples included 428 197 individuals (303 232 female participants [70.8%]; mean [SD] age, 28.6 [9.8] years) in the baseline surveys and 493 032 participants (348 490 female participants [70.7%]; mean [SD] age, 28.5 [9.4] years) in the most recent surveys. Both sexes were educated up to primary (35.7%) or secondary school (40.0%). The prevalence of current tobacco use among male participants ranged from 6.1% (95% CI, 5.2%-6.9%) in Ghana to 38.3% (95% CI, 35.8%-40.8%) in Lesotho in the baseline surveys and from 4.5% (95% CI, 3.7%-5.3%) in Ghana to 46.0% (95% CI, 43.2%-48.9%) in Lesotho during the most recent surveys. The decrease in prevalence ranged from 1.5% (Ghana) to 9.6% (Sierra Leone). The World Health Organization target of a 30% decrease in smoking was achieved among male participants in 8 countries: Rwanda, Nigeria, Ethiopia, Benin, Liberia, Tanzania, Burundi, and Cameroon. For female participants, the number of countries having a prevalence of smoking less than 1% increased from 9 in baseline surveys to 16 in the most recent surveys. The World Health Organization target of a 30% decrease in smoking was achieved among female participants in 15 countries: Cameroon, Namibia, Mozambique, Mali, Liberia, Nigeria, Burundi, Tanzania, Malawi, Kenya, Rwanda, Zimbabwe, Ethiopia, Burkina Faso, and Zambia. For both sexes, the prevalence of tobacco use and the decrease in prevalence of tobacco use were higher among less-educated individuals and individuals with low income. In both groups, the magnitude of inequalities consistently decreased, and its direction remained the same. Absolute inequalities were 3-fold higher among male participants, while relative inequalities were nearly 2-fold higher among female participants.
Conclusions and Relevance: Contrary to a projected increase, tobacco use decreased in most sub-Saharan African countries. Persisting socioeconomic inequalities warrant the stricter implementation of tobacco control measures to reach less-educated individuals and individuals with low income.
METHODS: This is a naturalistic study conducted in Kuala Lumpur, Malaysia. Patients with first-episode schizophrenia and related psychosis were recruited from Kuala Lumpur Hospital. WHOQOL-BREF, side effects of medications and other variables were assessed after 1 year of treatment in routine clinical situation.
RESULTS: The study comprised 120 adults. There were no significant statistical differences between groups concerning subjective quality of life, extrapyramidal side effects and employment. Significant less benzhexol usage was reported among AAs (P<0.001) compared to CAs and sulpiride.
CONCLUSION: Patients treated with CAs, sulpiride or AAs experienced similar quality of life, clinical and health outcomes after 1 year commencing treatment. Overall, the results are in line with other major pragmatic clinical trials. This study also found sulpiride cost-effective.