Displaying publications 21 - 40 of 170 in total

Abstract:
Sort:
  1. Wan Z, Hameed BH
    Bioresour Technol, 2011 Feb;102(3):2659-64.
    PMID: 21109428 DOI: 10.1016/j.biortech.2010.10.119
    In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
    Matched MeSH terms: Esters/chemical synthesis*
  2. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(3):157-60.
    PMID: 20124758
    In this study, difatty acyl urea has been successfully synthesized from corn oil using sodium ethoxide as a catalyst. Ethyl fatty ester and glycerol were produced as by-products. In this reaction, corn oil was refluxed with urea in ethanol. The highest conversion percentage (78%) was obtained when the process was carried out for 8 hours using urea to corn oil ratio of 5.6: 1.0 at 78 degrees C. Both difatty acyl urea and ethyl fatty ester have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Esters/chemistry
  3. Abdul Rahman MB, Jarmi NI, Chaibakhsh N, Basri M
    J Ind Microbiol Biotechnol, 2011 Jan;38(1):229-34.
    PMID: 20803246 DOI: 10.1007/s10295-010-0817-3
    Esterification of succinic acid with oleyl alcohol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was investigated in this study. Response surface methodology (RSM) based on a five-level, four-variable central composite design (CCD) was used to model and analyze the reaction. A total of 21 experiments representing different combinations of the four parameters including temperature (35-65°C), time (30-450 min), enzyme amount (20-400 mg), and alcohol:acid molar ratio (1:1-8:1) were generated. A partial cubic equation could accurately model the response surface with a R(2) of 0.9853. The effect and interactions of the variables on the ester synthesis were also studied. Temperature was found to be the most significant parameter that influenced the succinate ester synthesis. At the optimal conditions of 41.1°C, 272.8 min, 20 mg enzyme amount and 7.8:1 alcohol:acid molar ratio, the esterification percentage was 85.0%. The model can present a rapid means for estimating the conversion yield of succinate ester within the selected ranges.
    Matched MeSH terms: Esters/metabolism
  4. Lakshmanan S, Yung YL
    PMID: 33596165 DOI: 10.1080/19440049.2020.1842516
    Chloride reduction in crude palm oil (CPO) of greater than 80% was achieved with water washing conducted at 90°C. Inorganic chloride content in CPO was largely removed through washing, with no significant reduction in the organic chloride. Phosphorous content of CPO reduced by 20%, while trace elements such as calcium, magnesium and iron were also reduced in the washing operation. The 3-MCPDE formed in the refined, bleached and deodorised palm oil displayed (RBDPO) a linear relationship with the chloride level in washed CPO, which could be represented by the equation y = 0.91x, where y is 3-MCPDE and x represents the chloride in RBDPO refined from washed CPO. In plant scale trials using 5% water at 90°C, mild acidification of the wash water at 0.05% reduced chloride by average 76% in washed CPO. Utilising selected bleaching earths, controlled wash water temperature and wash water volume produced low chloride levels in RBDPO. Chloride content less than 1.4 mg kg-1 in plant RBDPO production was achieved, through physical refining of washed CPO containing less than 2 mg kg-1 chloride and would correspond to 3-MCPDE levels of 1.25 mg kg-1 in RBDPO. The 3-MCPDE reduced further to 1.1 mg kg-1 as the chloride level of washed CPO decreased below 1.8 mg kg-1. Chloride has been shown to facilitate the 3-MCPDE formation and its removal in lab scale washing study has yielded lower 3-MCPDE levels formed in RBDPO. In actual plant operations using washed CPO, 3-MCPDE levels below 1.25 mg kg-1 were achieved consistently in RBDPO.
    Matched MeSH terms: Esters/chemistry*
  5. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
    Matched MeSH terms: Esters/chemistry*
  6. Wafti NSA, Yunus R, Lau HLN, Yaw TCS, Aziz SA
    Bioprocess Biosyst Eng, 2021 Nov;44(11):2429-2444.
    PMID: 34269888 DOI: 10.1007/s00449-021-02615-6
    The present study reports the effects of three commercial immobilized lipases namely Novozyme 435 from Candida antarctica lipase B (CALB), Lipozyme TL IM from Thermomyces lanuginosus and Lipozyme RM IM from Rhizomucor miehei on the production of trimethylolpropane (TMP) ester from high oleic palm methyl ester (HO-PME) and TMP. The TMP ester is a promising base oil for biolubricants that are easily biodegradable and non-toxic to humans and the environment. Enzymatic catalysts are insensitive to free fatty acid (FFA) content, hence able to mitigate the side reactions and consequently reduce product separation cost. The potential of these enzymes to produce TMP ester in a solvent-free medium was screened at various reaction time (8, 23, 30 and 48 h), operating pressure (0.1, 0.3 and 1.0 mbar) and enzyme dosage (1, 3, 5 and 10% w/w). The reaction was conducted at a constant temperature of 70 °C and a molar ratio of 3.9:1 (HO-PME: TMP). Novozyme 435 produced the highest yield of TMP ester of 95.68 ± 3.60% under the following conditions: 23 h reaction time, 0.1 mbar operating pressure and 5% w/w of enzyme dosage. The key lubrication properties of the produced TMP ester are viscosity index (208 ± 2), pour point (- 30 ± - 2 °C), cloud point (- 15 ± - 2 °C), onset thermal degradation temperature (427.8 °C), and oxidation stability, RPVOT (42 ± 4 min). The properties of the TMP ester produced from the enzymatic transesterification are comparable to other vegetable oil-based biolubricants produced by chemical transesterification.
    Matched MeSH terms: Esters/metabolism
  7. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K
    J Colloid Interface Sci, 2017 Oct 15;504:387-396.
    PMID: 28586736 DOI: 10.1016/j.jcis.2017.05.114
    In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.
    Matched MeSH terms: Esters/chemistry
  8. Sim BI, Muhamad H, Lai OM, Abas F, Yeoh CB, Nehdi IA, et al.
    J Oleo Sci, 2018 Apr 01;67(4):397-406.
    PMID: 29526878 DOI: 10.5650/jos.ess17210
    This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.
    Matched MeSH terms: Esters*
  9. Nik Azmi NNA, Tan TC, Ang MY, Leong YH
    PMID: 36602442 DOI: 10.1080/19440049.2022.2163054
    The presence of 3-monochloropropanediol esters (3-MCPDE), 2-monochloropropanediol esters (2-MCPDE) and glycidyl esters (GE) in infant formula products has raised serious concerns. They incorporate vegetable oils, particularly palm-based oils, which are well-known to contain large amounts of these process contaminants. An analysis was conducted on infant formula samples (n = 16) obtained from the Malaysian market to determine the levels of 3-MCPDE, 2-MCPDE and GE using gas chromatography-mass spectrometry (GC-MS). The method was validated, with a limit of quantification (LOQ) on instrument of 0.10 µg/g for all analytes. The median concentrations of 3-MCPDE, 2-MCPDE and GE in infant formula in this study were 0.008 µg/g, 0.003 µg/g and 0.002 µg/g respectively. The estimated dietary intakes calculated from consumption of infant formula show higher exposures to infants within the age group of 0 to 5 months, highest for GE (1.61 µg/kg bw/day), followed by 3-MCPDE (0.68 µg/kg bw/day) and 2-MCPDE (0.41 µg/kg bw/day) compared to the age group of 6 to 12 months. Only one sample, relating to GE exposure is a potential risk for both age groups with MOE value below 25,000.
    Matched MeSH terms: Esters/analysis
  10. Ramli NAS, Roslan NA, Abdullah F, Bilal B, Ghazali R, Abd Razak RA, et al.
    PMID: 37682685 DOI: 10.1080/19440049.2023.2255290
    Esters of 2- and 3-monochloropropanediol (2-MCPDE, 3-MCPDE) and glycidol (GE) are regarded as process contaminants that are found in refined vegetable oils and oil-based foods. Since glycerol is produced during fat splitting, saponification and biodiesel production, it is important to have methods for determining contaminants that might be formed during these processes. Due to the use of glycerol as a food additive, data on the presence of compounds of toxicological concern, including 3-MCPD, are of interest. This study focuses on modifying the indirect analysis of 2-MCPDE, 3-MCPDE and GE using GC-MS based on the AOCS Official Method Cd 29a-13, validating the modified method, and quantifying 2-MCPDE, 3-MCPDE and GE in glycerol. The AOCS Cd 29a-13 method was modified at the initial stage of sample preparation in which the targeted esters were extracted from glycerol by vortex-assisted extraction before sample analysis. This modification was performed based on the polarity of all compounds involved. The calibration functions for all analytes were fitted to linear regression with R2 above 0.99. Limits of detection (LOD) 0.02, 0.01 and 0.02 mg kg-1 were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Spiked glycerol with 3-MCPDE and 2-MCPDE (0.25, 0.51 and 1.01 mg kg-1) and GE (0.58, 1.16 and 2.32 mg kg-1) were used for recovery and precision measurements. Recoveries of 100-108%, 101-103%, and 93-99% were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Acceptable precision levels with relative standard deviations ranged from 3.3% to 8.3% were obtained for repeatability and intermediate precision. The validated method was successfully applied for the analysis of the target compounds in refined glycerol from commercial plants, which showed that 2-MCPDE, 3-MCPDE and GE levels in the analysed samples were below the detection limit.
    Matched MeSH terms: Esters/analysis
  11. Liu C, Wang ST, Tan CH, Lin ZE, Lee WJ
    PMID: 38422382 DOI: 10.1080/19440049.2024.2319271
    Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are process contaminants commonly found in refined edible oils which are often added to infant formulas. The Taiwan Food and Drug Administration (TFDA) launched regulations for GEs in infant formulas that went into effect on 1 July 2021. To investigate levels of GEs and 3-MCPDEs in infant formula powder, 45 products were sampled and analysed during 2020-2021. The contents of GEs and 3-MCPDEs in formulas of different brands significantly varied, but their concentrations in all of the formulas complied with European Union (EU) regulations. Infant formulas containing palm oil had significantly higher 3-MCPDE levels in both extracted oils and milk powder than those without palm oil. Concentrations of GEs and 3-MCPDEs in infant formula powder and extracted oils were significantly lower in products from Europe than those from Australia and New Zealand. Infants aged 0-1 years in Taiwan who consumed only infant formula showed a margin of exposure (MoE) exceeding 25,000. Mean consumer exposures to 3-MCPDEs stayed below the tolerable daily intake (TDI), while high exposures at the 95th percentile (P95) exceeded the TDI by 1.7-fold. Herein, we present the changing trends in the risk assessment results of infant formula across various countries in the decade. Implementation of regulations and mitigation strategy effectively reduced the risk of infants being exposed to GEs and 3-MCPDEs through infant formula.
    Matched MeSH terms: Esters/analysis
  12. Roselan MA, Ashari SE, Faujan NH, Mohd Faudzi SM, Mohamad R
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512808 DOI: 10.3390/molecules25112616
    Tyrosinase inhibitors have become increasingly important targets for hyperpigmentation disease treatment. Kojic monooleate (KMO), synthesized from the esterification of kojic acid and oleic acid, has shown a better depigmenting effect than kojic acid. In this study, the process parameters include the speed of high shear, the time of high shear and the speed of the stirrer in the production of nanoemulsion containing KMO was optimized using Response Surface Methodology (RSM), as well as evaluated in terms of its physicochemical properties, safety and efficacy. The optimized condition for the formulation of KMO nanoemulsion was 8.04 min (time of high shear), 4905.42 rpm (speed of high shear), and 271.77 rpm (speed of stirrer), which resulted in a droplet size of 103.97 nm. An analysis of variance (ANOVA) showed that the fitness of the quadratic polynomial fit the experimental data with large F-values (148.79) and small p-values (p < 0.0001) and an insignificant lack of fit. The optimized nanoemulsion containing KMO with a pH value of 5.75, showed a high conductivity value (3.98 mS/cm), which indicated that the nanoemulsion containing KMO was identified as an oil-in-water type of nanoemulsion. The nanoemulsion remains stable (no phase separation) under a centrifugation test and displays accelerated stability during storage at 4, 25 and 45 °C over 90 days. The cytotoxicity assay showed that the optimized nanoemulsion was less toxic, with a 50% inhibition of cell viability (IC50) > 500 μg/mL, and that it can inhibit 67.12% of tyrosinase activity. This study reveals that KMO is a promising candidate for the development of a safe cosmetic agent to prevent hyperpigmentation.
    Matched MeSH terms: Esters/pharmacology*; Esters/standards*; Esters/chemistry
  13. Loh SH, Chen MK, Fauzi NS, Aziz A, Cha TS
    Sci Rep, 2021 Feb 01;11(1):2720.
    PMID: 33526809 DOI: 10.1038/s41598-021-81609-6
    Conventional microalgae oil extraction applies physicochemical destruction of dry cell biomass prior to transesterification process to produce fatty acid methyl esters (FAMEs). This report presents a simple and rapid direct transesterification (DT) method for FAMEs production and fatty acid profiling of microalgae using freshly harvested biomass. Results revealed that the FAMEs recovered from Chlorella vulgaris were 50.1 and 68.3 mg with conventional oil-extraction-transesterification (OET) and DT method, respectively. While for Messastrum gracile, the FAMEs recovered, were 49.9 and 76.3 mg, respectively with OET and DT methods. This demonstrated that the DT method increased FAMEs recovery by 36.4% and 53.0% from C. vulgaris and M. gracile, respectively, as compared to OET method. Additionally, the DT method recovered a significantly higher amount of palmitic (C16:0) and stearic (C18:0) acids from both species, which indicated the important role of these fatty acids in the membranes of cells and organelles. The DT method performed very well using a small volume (5 mL) of fresh biomass coupled with a shorter reaction time (~ 15 min), thus making real-time monitoring of FAMEs and fatty acid accumulation in microalgae culture feasible.
    Matched MeSH terms: Esters
  14. Cheryl-Low YL, Kong PS, Lee HV
    J Hazard Mater, 2021 04 05;407:124365.
    PMID: 33162238 DOI: 10.1016/j.jhazmat.2020.124365
    Non-edible bio-oil derived from lignocellulosic biomass could be used as environmentally friendly lubricant-ester base stock for maritime and road-type transportations. However, the use of crude bio-oil with highly oxygenated compounds required further upgrading to yield ester that mimicked the characteristics of Group V base oil (polyolesters). In this study, bio-oil based polyolesters was produced via esterification using green biopolymer alginate acid catalyst (Al-Alg). The bio-oil compounds used were acetic acid (AcA), propionic acid (PrA) and levulinic acid (LA), while polyols such as neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) were used. Optimization studies revealed that NPG-PrA ester gave the best ester purity of 100%, with 95% of diester selectivity under optimum conditions of 15 wt% Al-Alg, 8 h, 6:1 PrA:NPG and 140 °C. The produced polyolesters showed potential lube characteristics with viscosity index of 76, kinematic viscosity of 2.3 mm2 s-1 at 40 °C and oxidative induction time of 15 min at 100 °C. Furthermore, a reusability study of the Al-Alg catalyst indicated high NPG-PrA diester selectivity (above 90%) for 8 consecutive cycles. The physico-chemical properties of spent Al-Alg catalyst were also discussed.
    Matched MeSH terms: Esters
  15. Hasma H, Subramaniam A
    Lipids, 1978 Dec;13(12):905-7.
    PMID: 27520427 DOI: 10.1007/BF02533847
    Methyl esters from the triglyceride fraction of the neutral lipids of natural rubber latex were found by gas liquid chromatography to contain about 90% of a furanoid acid. Spectroscopic analysis identified the acid as 10,13-epoxy-11-methyloctadeca-10,12-dienoic acid.
    Matched MeSH terms: Esters
  16. Edith, Odeigah, Janius, Rimfiel B., Robiah Yunus
    MyJurnal
    Biodiesel is an attractive renewable energy source, which is suitable as a substitute to the non-renewablepetroleum diesel. However, it is plagued by its relatively bad cold flow behaviour. In this review, the factorsaffecting the cold flow of biodiesel, vis-à-vis the contradicting requirement of good cold flow and good ignitionproperties, are discussed. Fuel filter plugging, and crystallization of biodiesel are considered, together with thecold flow properties such as Pour Point (PP), Cloud Point (CP), Cold Filter Plugging Point (CFPP) and LowTemperature Filterability Test (LTFT). In addition, various methods used to improve the cold flow of biodieselare also presented, with a special emphasis laid on the effects of these methods in reducing the Cloud Point.Strategies to improve cold flow, and yet maintaining the good ignition quality of biodiesel, are also proposed.As far as the cold flow of biodiesel is concerned, desirable attributes of its esters are short, unsaturated andbranched carbon chains. However, these desirable attributes present opposing properties in terms of ignitionquality and oxidation stability. This is because esters with short, unsaturated and branched carbon chainspossess very good cold flow but poor ignition quality and oxidation stability. The target is therefore to producebiodiesel with good cold flow, sufficient ignition quality, and good oxidation stability. This target proves tobe quite difficult and is a major problem in biodiesel research. New frontiers in this research might be thedesign of the new cold flow improvers that is similar to those used in the petroleum diesel but is tailored forbiodiesel. Genetic modifications of the existing feedstock are also desirable but the food uses of this particularfeedstock should always be taken into consideration.
    Matched MeSH terms: Esters
  17. Mohd. Sapuan Salit, Mohamed Abd. Rahman, Khalina Abdan
    MyJurnal
    Vinyl esters combine the best of polyesters and epoxies in terms of properties and processing. Without
    complicating presence of reinforcing fibres, this study investigated the effects of catalyst amount, preheating time, molding temperature, and pressure on flexural and water absorption properties of cast vinyl ester (VE) using a factorial experiment. Longer preheating time enhanced the stiffness of VE, while higher molding pressure reduced the flexural modulus. All the four factors did not affect the flexural strength and elongation at the break of molded VE significantly. Using a high molding pressure also caused molded VE to have higher water absorption for a long water exposure period. Meanwhile, greater water absorption at bigger amount of catalyst and higher preheating temperature indicate possible interactions between these factors. The results suggest possible negative effects of high molding pressure through the increase in the network of micro-cracks, and thus lowering the integrity of cast VE sheets. Judicious selection of the process parameters was required in order to obtain good quality molded VE sheets and by extension fibre-reinforced VE composites. Molded VE-unsaturated polyester (UP) blend is a significantly different material which is 1.49 times stronger, 2.38 times more flexible, but it is 0.69 less stiff than neat VE and with significantly higher water absorption. The results obtained warrant for a further investigation in process optimization of VE molding and the use of VE-UP blend as a matrix for natural fibre-reinforced composites.
    Matched MeSH terms: Esters; Polyesters
  18. Nurazwa Ishak, Ahmad Firdaus Lajis, Rosfarizan Mohamad, Arbakariya Ariff, Murni Halim, Helmi Wasoh
    MyJurnal
    In this paper, the syntheses of kojic acid esters via chemical and enzymatic methods are
    reviewed. The advantages and disadvantages of chemical process in term of process, safety and
    efficiency are discussed. In enzymatic process, the significant process parameters related to the
    synthesis of kojic acid esters such as the lipases, solvent, temperature and water content are
    highlighted. Possible enzymatic synthesis using solvent and solvent-free system taking into
    consideration of the difference in these systems involving cost, lipase reusability and efficiency
    is comparatively reviewed. The possible approach for large scale production using various
    enzyme reactor designs is also discussed and re-evaluated.
    Matched MeSH terms: Esters
  19. Chaijan M, Panpipat W, Cheong LZ
    Molecules, 2022 Nov 14;27(22).
    PMID: 36431934 DOI: 10.3390/molecules27227833
    Concerns have been raised about the safety and tolerability of phytosterol esters due to their vulnerability to oxidation. Herein, oxidation of the unsaturated fatty acid-phytosterol ester, namely β-sitosteryl oleate, was observed in comparison to native β-sitosterol after accelerated storage at 65 °C for 35 days in a bulk oil model system. Depending on the sterol structure, various chemical indices of lipid oxidation, including hydroperoxide value (HPV), thiobarbituric acid reactive substances (TBARS), p-anisidine value (AnV), and 7-keto derivatives, changed at varying rates in both samples. Such indicators for β-sitosteryl oleate appeared to be obtained at higher concentrations than those for β-sitosterol. The first order kinetic was used to describe the losses of β-sitosteryl oleate and β-sitosterol in bulk oil. It was discovered that the β-sitosteryl oleate (k = 0.0202 day-1) underwent oxidative alteration more rapidly than β-sitosterol (k = 0.0099 day-1). Results indicated that physical structure was the principal factor in the determination of storage stability of phytosterol and its ester. Research on antioxidants and storage techniques can be expanded in order to reduce the oxidative loss of phytosterol esters during storage and improve the safety and tolerability of phytosterol esters.
    Matched MeSH terms: Esters
  20. Kumar CS, Then LY, Chia TS, Chandraju S, Win YF, Sulaiman SF, et al.
    Molecules, 2015 Sep 11;20(9):16566-81.
    PMID: 26378514 DOI: 10.3390/molecules200916566
    A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.
    Matched MeSH terms: Esters/chemical synthesis*; Esters/pharmacology; Esters/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links