Displaying publications 21 - 40 of 976 in total

Abstract:
Sort:
  1. Mok KT, Tung SEH, Kaur S, Chin YS, Martini MY, Ulaganathan V
    Nutr Health, 2023 Mar;29(1):9-20.
    PMID: 36330727 DOI: 10.1177/02601060221134997
    Background: One of the key importance of vegetable consumption is to obtain sufficient micronutrients, dietary fibre, and for the prevention of childhood obesity. Most Malaysian children did not meet the recommended intake of vegetable consumption, and this is especially vulnerable among the urban poor population due to food insecurity. Efforts are needed to promote vegetable consumption that fall short of the recommended intake level. Aim: This trial aims to examine the effectiveness of the "GrowEat" project, as a nutrition intervention programme integrated with home gardening activities to improve vegetable consumption among urban poor children in Kuala Lumpur, Malaysia. Methods: This is a single-blinded parallel two-arm cluster randomised controlled trial (RCT) that include 134 children. Two zones in Kuala Lumpur will be randomly selected, and three low-cost housing flats from each zone will be selected as the intervention and control groups respectively. The trial is designed based on the social cognitive theory (SCT). Children from the intervention group (n = 67) will attend a 12-week programme, which consists of home garden-based activities, gardening and nutrition education session. Assessment will be conducted for both groups at three time points: baseline, post-intervention and follow-up phase at 3 months after the intervention. Conclusion: We anticipate positive changes in vegetable consumption and its related factors after the implementation of the "GrowEat" project. The current intervention may also serve as a model and can be extended to other urban poor population for similar interventions in the future to improve vegetable consumption, agriculture and nutrition awareness.
    Matched MeSH terms: Fruit
  2. Kalick LS, Khan HA, Maung E, Baez Y, Atkinson AN, Wallace CE, et al.
    Pharmacol Res, 2023 Feb;188:106630.
    PMID: 36581166 DOI: 10.1016/j.phrs.2022.106630
    Mangosteen (Garcinia mangostana L.), also known as the "queen of fruits", is a tropical fruit of the Clusiacea family. While native to Southeast Asian countries, such as Thailand, Indonesia, Malaysia, Myanmar, Sri Lanka, India, and the Philippines, the fruit has gained popularity in the United States due to its health-promoting attributes. In traditional medicine, mangosteen has been used to treat a variety of illnesses, ranging from dysentery to wound healing. Mangosteen has been shown to exhibit numerous biological and pharmacological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, antidiabetic, and anticancer properties. Disease-preventative and therapeutic properties of mangosteen have been ascribed to secondary metabolites called xanthones, present in several parts of the tree, including the pericarp, fruit rind, peel, stem bark, root bark, and leaf. Of the 68 mangosteen xanthones identified so far, the most widely-studied are α-mangostin and γ-mangostin. Emerging studies have found that mangosteen constituents and phytochemicals exert encouraging antineoplastic effects against a myriad of human malignancies. While there are a growing number of individual research papers on the anticancer properties of mangosteen, a complete and critical evaluation of published experimental findings has not been accomplished. Accordingly, the objective of this work is to present an in-depth analysis of the cancer preventive and anticancer potential of mangosteen constituents, with a special emphasis on the associated cellular and molecular mechanisms. Moreover, the bioavailability, pharmacokinetics, and safety of mangosteen-derived agents together with current challenges and future research avenues are also discussed.
    Matched MeSH terms: Fruit/chemistry
  3. Zhi Ling RL, Kong LK, Lim LH, Teo SS, Ng HS, Lan JC, et al.
    Environ Res, 2023 Feb 01;218:115013.
    PMID: 36495970 DOI: 10.1016/j.envres.2022.115013
    Food loss or waste is a far-reaching problem and has indeed become a worrying issue that is growing at an alarming rate. Fruits and vegetables are lost or wasted at the highest rate among the composition of food waste. Furthermore, the world is progressing toward sustainable development; hence, an efficient approach to valorise fruit and vegetable waste (FVW) is necessary. A simple phenotypic characterisation of microbiota isolated from the fermented FVW was conducted, and its effectiveness toward wastewater treatment was investigated. Presumptive identification suggested that yeast is dominant in this study, accounting for 85% of total isolates. At the genus level, the enriched medium's microbial community consists of Saccharomyces, Bacillus and Candida. Ammonium in the wastewater can enhance certain bacteria to grow, such as lactic acid bacteria, resulting in decreased NH4+ concentration at the end of the treatment to 0.5 mg/L. In addition, the fermented biowaste could reduce PO43- by 90% after the duration of treatment. Overall, FVW is a valuable microbial resource, and the microbial population enables a reduction in organic matter such as NH4+ and PO43-. This study helps explore the function and improve the effectiveness of utilising biowaste by understanding the microorganisms responsible for producing eco-enzyme.
    Matched MeSH terms: Fruit
  4. Chew ZL, Tan EH, Palaniandy SA, Woon KS, Phuang ZX
    Sci Total Environ, 2023 Jan 15;856(Pt 1):159007.
    PMID: 36167122 DOI: 10.1016/j.scitotenv.2022.159007
    Improper discard of oil palm trunk and empty fruit bunch renders massive greenhouse gases. Turning these palm wastes into solid biofuels could aid in carbon reduction. The embodied environmental impacts of the solid biofuel densification process are neglected in carbon emission quantification studies applying Greenhouse Gas Protocol while the significance of classifying the system's direct and indirect carbon emissions were overlooked in those utilising life cycle assessment. Despite the prospect of both methodologies to complement their limitations for carbon emissions quantification, no study integrates both methodologies to investigate direct and indirect emissions systematically from a life cycle perspective. An integrated framework of life cycle assessment and Greenhouse Gas Protocol is developed to quantify the direct and indirect carbon emissions of oil palm trunk and empty fruit bunch densification from cradle-to-gate for three pellet plants in Indonesia and Malaysia. The emissions are categorised into three emission scopes: Scope 1, Scope 2, and Scope 3 according to the Greenhouse Gas Protocol, integrated with avoided emissions which are quantified via life cycle assessment. The pellet plants generate 534.7-732.3 kg CO2-eq/tonnepellet per hour, in which Scope 1 (i.e., direct emissions) is the major emission scope due to high emissions from wastewater production and drying fuel combustion. Washing equipment (169.2-439.0 kg CO2-eq/tonnepellet per hour) and burners (87.1-214.5 kg CO2-eq/tonnepellet per hour) are the hotspots found in the pellet plants. Producing empty fruit bunch pellets could reduce 62.0-74.1 % of emissions than landfilling the empty fruit bunch. Empty fruit bunch pellet and oil palm trunk pellet are recommended to co-fire with coal to phase down coal usage in achieving COP26 pledge. This study provides data-driven insights for quantifying carbon emissions through the integrated framework and could be a reference in future life cycle carbon footprint studies of the biomass densification process.
    Matched MeSH terms: Fruit
  5. Jayanthi Antonisamy A, Marimuthu S, Malayandi S, Rajendran K, Lin YC, Andaluri G, et al.
    Environ Res, 2023 Jan 15;217:114758.
    PMID: 36400225 DOI: 10.1016/j.envres.2022.114758
    The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
    Matched MeSH terms: Fruit/chemistry
  6. Katja DG, Hilmayanti E, Nurlelasari, Mayanti T, Harneti D, Maharani R, et al.
    J Asian Nat Prod Res, 2023 Jan;25(1):36-43.
    PMID: 35128999 DOI: 10.1080/10286020.2022.2032678
    Two new azadirone-type limonoids, namely lasiocarpine A (1) and lasiocarpine B (2) were isolated from the fruit of Chisocheton lasiocarpus along with three known limonoids (3-5). UV, IR, one- and two- dimensional NMR, and mass spectrometry were used to determine the chemical structure of the isolated compounds. Furthermore, their cytotoxic activity against breast cancer cell line MCF-7 was evaluated using PrestoBlue reagent. From these compounds, lasiocarpine A (1) showed the strongest activity with an IC50 value of 43.38 μM.
    Matched MeSH terms: Fruit/chemistry
  7. Tamjid Farki NNANL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH
    Int J Phytoremediation, 2023;25(12):1567-1578.
    PMID: 36794599 DOI: 10.1080/15226514.2023.2175780
    Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
    Matched MeSH terms: Fruit/chemistry
  8. Yousef TA, Sahu UK, Jawad AH, Abd Malek NN, Al Duaij OK, ALOthman ZA
    Int J Phytoremediation, 2023;25(9):1142-1154.
    PMID: 36305491 DOI: 10.1080/15226514.2022.2137102
    A low-cost fruit waste namely watermelon peel (WMP) was utilized as a promising precursor for the preparation of mesoporous activated carbon (WMP-AC) via microwave assisted-K2CO3 activation. The WMP-AC was applied as an adsorbent for methylene blue dye (MB) removal. Several types of characterizations, such as specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Elemental Analysis (CHNS/O), and Fourier Transform Infrared Spectroscopy (FTIR) were used to identify the physicochemical properties of WMP-AC. Furthermore, Box-Behnken design (BBD) was applied to optimize the influence of the adsorption operational variables (contact time, adsorbent dose, working temperature, and solution pH) on MB dye adsorption. Thus, based on significant interactions, the optimum BBD output shows the best removal of 50 mg·L-1 MB (92%) was recorded at an adsorbent dose of 0.056 g, contact time of 4.4 min, working temperature of 39 °C, and solution pH 8.4. The Langmuir uptake capacity of WMP-AC was found to be 312.8 mg·g-1, with the best fitness to the pseudo-second-order kinetics model and an endothermic adsorption process. The adsorption mechanisms of MB by WMP-AC can be assigned to the hydrogen bonding, electrostatic attraction, and π-π stacking. The findings of this study indicate that WMP is a promising precursor for producing porous activated carbon for MB dye removal.
    Matched MeSH terms: Fruit
  9. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
    Matched MeSH terms: Fruit
  10. Choo YX, Teh LK, Tan CX
    Molecules, 2022 Dec 30;28(1).
    PMID: 36615507 DOI: 10.3390/molecules28010313
    Sonication is recognized as a potential food processing method to improve the functional properties of fruit juice. This study evaluated the effects of different sonication durations (20, 40, and 60 min) and thermal pasteurization on the nutritional, antioxidant, and microbial properties of noni juice. Fresh noni juice served as the control. The main organic acids detected were malic (57.54−89.31 mg/100 mL) and ascorbic (17.15−31.55 mg/100 mL) acids. Compared with the fresh sample, the concentrations of these compounds were significantly improved (p < 0.05) in the 60 min sonicated sample but reduced (p < 0.05) in the pasteurized sample. Moreover, sonication for 60 min resulted in increments of scopoletin, rutin, and vanillic acid compared to the fresh sample. The antioxidant activity of the juice sample was improved in the sample sonicated for 60 min. Irrespective of juice processing method, the level of microbial counts in noni juice was within the satisfactory level over the 8 weeks of refrigerated (4 °C) storage. This study highlights the feasibility of using ultrasound processing to enhance the quality of noni juice on the industrial scale.
    Matched MeSH terms: Fruit
  11. Alam S, Dhar A, Hasan M, Richi FT, Emon NU, Aziz MA, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557843 DOI: 10.3390/molecules27248709
    Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
    Matched MeSH terms: Fruit*
  12. Zia S, Saleem M, Asif M, Hussain K, Butt BZ
    Inflammopharmacology, 2022 Dec;30(6):2211-2227.
    PMID: 36223063 DOI: 10.1007/s10787-022-01048-1
    Rheumatoid arthritis is a chronic inflammatory disorder of polyarticular tissues, characterised by progressive synovitis. Its prolonged treatment imparts a huge burden on the healthcare system and results in toxicity, which necessitates the search for safe, efficacious and cost-effective therapies. Diospyros malabarica (Desr.) Kostel is traditionally used for anti-inflammatory purposes; however, to the best of our knowledge, there is no detailed study reporting the in vivo anti-inflammatory potential of this plant. Therefore, in the current study, the methanol extract of D. malabarica (Desr.) Kostel fruit (mDMF) was evaluated for its antioxidant, anti-inflammatory and anti-arthritic potentials, along with its underlying mechanisms. The antioxidant activity was evaluated by DPPH assay. Total phenolic and flavonoid contents were estimated via colorimetric and high-performance liquid chromatography (HPLC) methods. Different doses (250, 500 and 750 mg/kg) of mDMF were used to evaluate the anti-inflammatory and anti-arthritis actions in acute inflammatory (carrageenan and histamine-induced paw oedema) and Freund's complete adjuvant (FCA)-induced arthritis rat models. Levels of various pro- and anti-inflammatory biomarkers were estimated using ELISA and RT-PCR techniques. Paw samples were used for different histopathological and radiographic studies. Qualitative phytochemical and HPLC analyses indicated the presence of various polyphenolic compounds in mDMF, which exhibited marked antioxidant activity in the DPPH assay. mDMF showed time-dependent anti-inflammatory and anti-arthritic effects in in vivo models. ELISA assay data showed significant (p fruits extract are warranted to explore its effects in other inflammatory disorders, including irritable bowel syndrome, appendicitis and hepatitis.
    Matched MeSH terms: Fruit
  13. Conley M, Barden A, Viecelli AK, Irish AB, Cass A, Hawley CM, et al.
    J Hum Nutr Diet, 2022 Dec;35(6):1178-1191.
    PMID: 34921448 DOI: 10.1111/jhn.12983
    BACKGROUND: Dietary management plays an important role in patients with kidney failure. Current dietary habits of Australians and New Zealanders (ANZ) and Malaysians with chronic kidney disease (CKD Stage 4-5) have not been adequately investigated. We report the dietary habits of people with advanced CKD and their adherence to country-specific dietary guidelines.

    METHODS: Participants with CKD Stage 4-5, enrolled in the Omega-3 Fatty Acids (Fish oils) and Aspirin in Vascular access Outcomes in Renal Disease (FAVOURED) trial, completed a lifestyle questionnaire at baseline on their dietary intake.

    RESULTS: Of 567 participants, 538 (ANZ, n = 386; Malaysian, n = 152; mean ± SD age 54.8 ± 14.3 years, 64% male) completed the questionnaire. Dietary fruit and vegetable intakes were higher in ANZ participants; 49% (n = 189) consumed ≥2 serves day-1 of fruit and 61% (n = 235) ate ≥2 serves day-1 of vegetables compared to 24% (n = 36) and 34% (n = 52) of Malaysians, respectively (p fruit and five vegetable serves day-1 . Fish consumption was higher in Malaysians with 83% (n = 126) consuming ≥2 serves week-1 compared to 21% (n = 81) of ANZ participants (p 2 chicken serves week-1 and 65% (n = 251) ate >2 serves week-1 of red meat compared to 43% (n = 65) and 15% (n = 23) of Malaysians, respectively.

    CONCLUSIONS: Significant regional variation in dietary intake for fruit, vegetables and animal protein is described that likely reflects cultural and economic differences. Barriers to meeting recommended dietary intakes require further investigation.

    Matched MeSH terms: Fruit
  14. Lo YL, Lee SS, Cheng SH
    Nutr Health, 2022 Dec;28(4):741-750.
    PMID: 35522261 DOI: 10.1177/02601060221099782
    Background: The COVID-19 pandemic has negatively impacted the eating behaviours of people especially fruits and vegetable intake. No study has addressed the fruits and vegetables intake during the COVID-19 in Malaysia. Aim: to assess the daily intake of fruits and vegetables among Malaysian adults during the COVID-19 outbreak, perceived changes in intake, as well as factors associated with the changes in intake. Methods: A cross-sectional study was conducted through online platforms and a total of 506 participants were recruited. Semi food-frequency questionnaires were used to assess participants' fruit and vegetable intake. Socio-demographics information, knowledge, attitude and practices (KAP) of fruits and vegetables were collected. All statistical analyses were performed using SPSS. Results: The majority of participants (99.8%) did not achieve the recommended five servings per day, in which they consumed an average of 0.84 servings of fruits and vegetables per day. 46.4% of participants reported no changes in intake compared to before the outbreak. Fruits and vegetables intake was associated with physical activity level, knowledge, and beliefs of foods that may prevent/cure COVID-19. Binary logistic regression identified two significant risk factors of daily fruits and vegetables intake namely, being a non-Chinese (AOR = 1.905, 95% CI = 1.114-3.257) and having good practices scores (AOR = 2.543, 95% CI = 1.611-4.015). Conclusion: The study found a low daily intake of fruits and vegetables. The findings suggested that nutritional interventions are necessary to improve awareness on consuming more fruits and vegetables to improve overall health.
    Matched MeSH terms: Fruit
  15. Azizi MMF, Romeli S, Razali H, Ariffin EY, Tajol Ariffin MA, Heng LY, et al.
    Sci Rep, 2022 Nov 11;12(1):19324.
    PMID: 36369187 DOI: 10.1038/s41598-022-20998-8
    More than 200 different cultivars of durian exist worldwide but Durio zibethinus or Musang King (MK) is the most premium and prized durian fruit among the recommended varieties. Early identification of this premium variety is critical to protect from non-authentic MK durian cultivars. However, the MK variety's morphological traits are nearly identical to other varieties. Currently, the identification of durian varieties is mostly performed via evaluation of leaf shape, fruit shape, aroma, taste and seed shape and this requires trained personnel for the morphology observation. To enable the rapid identification of the MK variety, PCR amplification of ten durian varieties using six gene candidates from the chloroplast genome was first performed to obtain DNA probes that were specific to the MK durian variety. PCR amplification of ten durian varieties using primers designed confirmed that the nadhA gene sequence showed an obvious difference in the MK variety from other durian varieties. The unique sequence of MK was used as a DNA probe to develop an electrochemical biosensor for the direct identification of the MK durian variety. The electrochemical biosensor was based on the hybridization response of the immobilized DNA probe with the target DNA from the MK variety and was monitored via differential pulse voltammetry technique. Under optimal conditions, the DNA electrochemical biosensor showed a low detection limit at 10% of MK genomic DNA concentration with a wide linear calibration range of 0.05-1.5 µM (R2 = 0.9891) and RSD value of 3.77% (n = 3). The results of the developed DNA biosensor provide high promise for the development of portable sensors employed in the determination of MK variety in the field.
    Matched MeSH terms: Fruit/genetics
  16. Alkhoori MA, Kong AS, Aljaafari MN, Abushelaibi A, Erin Lim SH, Cheng WH, et al.
    Biomolecules, 2022 Nov 03;12(11).
    PMID: 36358976 DOI: 10.3390/biom12111626
    Date palm (Phoenix dactylifera L.) is an essential agricultural crop in most Middle Eastern countries, and its fruit, known as dates, is consumed by millions of people. Date seeds, a by-product of the date fruit processing industry, are a waste product used as food for domestic farm animals. Date seeds contain abundant sources of carbohydrates, oil, dietary fiber, and protein; they also contain bioactive phenolic compounds that may possess potential biological properties. In addition, its rich chemical composition makes date seeds suitable for use in food product formulation, cosmetics, and medicinal supplements. This review aims to provide a discourse on the nutritional value of date seeds. The latest data on the cytotoxicity of date seed compounds against cancer cell lines, its ability to combat diabetes, antioxidant potential, antimicrobial effect, and anti-inflammatory activity will be provided, considering its potential to be a nutritional therapeutic agent for chronic diseases. Application of date seeds in the form of powder and oil will also be discussed.
    Matched MeSH terms: Fruit/chemistry
  17. Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, et al.
    Ultrason Sonochem, 2022 Nov;90:106194.
    PMID: 36242792 DOI: 10.1016/j.ultsonch.2022.106194
    Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
    Matched MeSH terms: Fruit and Vegetable Juices
  18. Qi Y, Rong S, Liao K, Huo J, Lin Q, Hamzah SH
    Int J Environ Res Public Health, 2022 Oct 28;19(21).
    PMID: 36360973 DOI: 10.3390/ijerph192114096
    Inadequate intake of fruits and vegetables (FV) and moderate-to-vigorous physical activity (MVPA) in children has become a global public health problem. Therefore, school-based gardening and cooking (SGC) and sports participation (SP) interventions may be effective in improving children's FV intake and MVPA. The aim of this study is to develop and evaluate the effectiveness of SGC and SP interventions on FV intake and MVPA among Chinese children. In this cluster randomized controlled trial study, 237 children in grades 4-5 from six public primary schools from Changsha, Hunan Province, China will be randomly assigned to: (1) a SGC and SP combined intervention group; (2) a SP intervention group; (3) a regular practice group. The intervention clusters will be implemented for a period of 6 months and follow up will be carried out after 12 months. The outcome will be collected using a combination of self-reported and objective measures. Primary outcomes will include children's FV intake and duration of MVPA per day, and secondary outcomes will included frequency and attitudes of FV intake and SP, in addition to other measures. Finally, a process evaluation will be used to analyze the facilitators and barriers to intervention implementation. Trial Registration: (Registration Number: ChiCTR2200064141).
    Matched MeSH terms: Fruit
  19. Harray AJ, Boushey CJ, Pollard CM, Dhaliwal SS, Mukhtar SA, Delp EJ, et al.
    Nutrients, 2022 Sep 16;14(18).
    PMID: 36145211 DOI: 10.3390/nu14183838
    There are limited methods to assess how dietary patterns adhere to a healthy and sustainable diet. The aim of this study was to develop a theoretically derived Healthy and Sustainable Diet Index (HSDI). The HSDI uses 12 components within five categories related to environmental sustainability: animal-based foods, seasonal fruits and vegetables, ultra-processed energy-dense nutrient-poor foods, packaged foods and food waste. A maximum of 90 points indicates the highest adherence. The HSDI was applied to 4-day mobile food records (mFRTM) from 247 adults (18−30 years). The mean HSDI score was 42.7 (SD 9.3). Participants who ate meat were less likely to eat vegetables (p < 0.001) and those who ate non-animal protein foods were more likely to eat more fruit (p < 0.001), vegetables (p < 0.05), and milk, yoghurt and cheese (p < 0.05). After adjusting for age, sex and body mass index, multivariable regression found the strongest predictor of the likelihood of being in the lowest total HSDI score tertile were people who only took a bit of notice [OR (95%CI) 5.276 (1.775, 15.681) p < 0.005] or did not pay much/any attention to the health aspects of their diet [OR (95%CI) 8.308 (2.572, 26.836) p < 0.0001]. HSDI provides a new reference standard to assess adherence to a healthy and sustainable diet.
    Matched MeSH terms: Fruit
  20. Yaqoob AA, Guerrero-Barajas C, Ibrahim MNM, Umar K, Yaakop AS
    Environ Sci Pollut Res Int, 2022 May;29(22):32913-32928.
    PMID: 35020140 DOI: 10.1007/s11356-021-17444-z
    The present work focused on the utilization of three local wastes, i.e., rambutan (Nephelium lappaceum), langsat (Lansium parasiticum), and mango (Mangifera indica) wastes, as organic substrates in a benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic water. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78% and 80% removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metal removal and energy generation. In the present work, the BMFC mechanism, current challenges, and future recommendations are also enclosed.
    Matched MeSH terms: Fruit
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links