Displaying publications 21 - 40 of 70 in total

Abstract:
Sort:
  1. Ho WS, Pang SL, Abdullah J
    Physiol Mol Biol Plants, 2014 Jul;20(3):393-7.
    PMID: 25049467 DOI: 10.1007/s12298-014-0230-x
    The large-scale genomic resource for kelampayan was generated from a developing xylem cDNA library. A total of 6,622 high quality expressed sequence tags (ESTs) were generated through high-throughput 5' EST sequencing of cDNA clones. The ESTs were analyzed and assembled to generate 4,728 xylogenesis unigenes distributed in 2,100 contigs and 2,628 singletons. About 59.3 % of the ESTs were assigned with putative identifications whereas 40.7 % of the sequences showed no significant similarity to any sequences in GenBank. Interestingly, most genes involved in lignin biosynthesis and several other cell wall biosynthesis genes were identified in the kelampayan EST database. The identified genes in this study will be candidates for functional genomics and association genetic studies in kelampayan aiming at the production of high value forests.
    Matched MeSH terms: Gene Library
  2. Manoharan B, Sulaimen Z, Omar F, Othman RY, Mohamed SZ, Bhassu S
    Genet. Mol. Res., 2011;10(2):712-6.
    PMID: 21523650 DOI: 10.4238/vol10-2gmr944
    Malaysian arowana (dragonfish; Scleropages formosus) is an ancient osteoglossid fish from southeast Asia. Due to the high demand of the ornamental fish trade and because of habitat loss, the species is close to extinction. We isolated and characterized 10 polymorphic microsatellites of this species, using 5'-anchored PCR. The number of alleles at the 10 microsatellite loci ranged from 2 to 28, with a mean of 7.8/locus. The observed heterozygosity ranged from 0.03 to 0.93 (mean: 0.39), whereas the expected heterozygosity ranged from 0.03 to 0.94 (mean: 0.46). Seven microsatellites deviated from Hardy-Weinberg equilibrium, and three conformed to Hardy-Weinberg equilibrium and were in linkage equilibrium. These 10 novel microsatellites should facilitate studies of genetic diversity and population structure of arowana to help plan actions for the conservation of the indigenous Malaysian arowana.
    Matched MeSH terms: Gene Library
  3. Arockiaraj J, Bhatt P, Kumaresan V, Dhayanithi NB, Arshad A, Harikrishnan R, et al.
    Fish Shellfish Immunol, 2015 Nov;47(1):221-30.
    PMID: 26363233 DOI: 10.1016/j.fsi.2015.09.015
    In this study, we reported a molecular characterization of three CC chemokines namely, CsCC-Chem14, CsCC-Chem20 and CsCC-Chem25 which are were identified from the established cDNA library of striped murrel Channa striatus. Multiple sequence alignment of all the three chemokines revealed the presence of gene specific domains and motifs including small cytokine domain, IL8 like domain, receptor binding site and glycosaminoglycan (GAG) binding sites. Three dimensional structures of the chemokines under study showed an important facet on their anti-microbial property. Tissue specific mRNA expression showed that the CsCC-Chem14 is highly expressed in spleen, CsCC-Chem20 in liver and CsCC-Chem25 in trunk kidney. On challenge C. striatus with oomycete fungus Aphanomyces invadans, both CsCC-Chem20 and CsCC-Chem25 showed significant (P < 0.05) up-regulation compared to CsCC-Chem14. The increase in the expression levels of CsCC-Chem20 and CsCC-Chem25 due to infection showed that they are antimicrobial proteins. But considering the CsCC-Chem14 expression, it is found to be a constitutive chemokine and is involved in homeostatic function in spleen of C. striatus. C. striatus challenged with bacteria Aeromonas hydrophila also exhibited different up-regulation pattern in all the three chemokines at various time points. However, extensive studies are required to determine the functional activities of CsCC-Chem14, CsCC-Chem20 and CsCC-Chem25 in vitro and in vivo to gain more knowledge at the molecular and proteomic levels.
    Matched MeSH terms: Gene Library
  4. Austin CM, Tan MH, Harrisson KA, Lee YP, Croft LJ, Sunnucks P, et al.
    Gigascience, 2017 08 01;6(8):1-6.
    PMID: 28873963 DOI: 10.1093/gigascience/gix063
    One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to ∼1.8 metres in length and live to age ≥48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family.
    Matched MeSH terms: Gene Library
  5. Ky, H., Yeap, S. K., Napis, S. B.
    MyJurnal
    Plant tissues, especially durian tissues contain high content of polysaccharides, polyphenols and other secondary metabolites which can co-precipitate with RNA causing problem in further transcriptomic study. In this experiment, three basic chaotic agents, CTAB, SDS and guanidine are used in three basic protocols for RNA isolation. The effectiveness of each method was determined by spectrophotometer, denaturing agarose gels analysis and northern blot hybridization. CTAB combining with additional sodium acetate precipitation step showed highest yield and best quality of isolated RNA which was free from contaminations of polysaccharides, polyphenols and other secondary metabolites. Furthermore, the total RNA from 4-month old durian flesh of clone D24 was successfully used to construct a cDNA library. In conclusion, CTAB method is effective to isolate total RNA on various types of durian tissues for further gene expression analysis.
    Matched MeSH terms: Gene Library
  6. Mohamad Asri MN, Mat Desa WNS, Ismail D
    J Forensic Sci, 2018 Jan;63(1):285-291.
    PMID: 28480527 DOI: 10.1111/1556-4029.13522
    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112).
    Matched MeSH terms: Gene Library
  7. Wong KK, Noor-Arniwati Mat-Daud, Roohaida Othman, Zubir Din, Wan KL, Salmijah Surif
    The cockle, Anadara granosa, was experimentally exposed to low (0.1 mg/L) and sublethal (1.0 mg/L) doses of copper (Cu) for a period of 24 hrs. Significant increase in Cu concentrations in whole tissues and hepatopancreas compared to control animals were observed. In order to study the effect of copper exposure at molecular levels, a subtractive cDNA library was constructed from the hepatopancreas of cockles exposed to 1.0 mg/L Cu. Screening of the subtractive cDNA library using reverse northern analysis resulted in several differentially expressed genes, including one that codes for metallothionein (MT). The complete coding sequence of the MT gene (designated as AnaMT2) reveals an open reading frame of 234 bp in length that encodes a 77 amino acid polypeptide as revealed by the deduced amino acid composition. Although showing similarities with other molluscan MTs, AnaMT2 can be distinguished by its lower glycine and higher asparagine and proline content. Expression analysis of the AnaMT2 by northern analysis indicated higher mRNA level in cockle exposed to 1.0 mg/L Cu and was undetectable in those treated with 0.1 mg/L. This suggests that AnaMT2 represents a primarily inducible MT not highly expressed under basal conditions.
    Matched MeSH terms: Gene Library
  8. Mohd Ghani F, Bhassu S
    PeerJ, 2019;7:e8107.
    PMID: 31875142 DOI: 10.7717/peerj.8107
    The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
    Matched MeSH terms: Gene Library
  9. Arifin N, Yunus MH, Nolan TJ, Lok JB, Noordin R
    Am J Trop Med Hyg, 2018 04;98(4):1165-1170.
    PMID: 29436335 DOI: 10.4269/ajtmh.17-0697
    Strongyloides stercoralis is a human parasite that can cause a long-term infection. In immunosuppressed patients, strongyloidiasis may be fatal when there is overwhelming autoinfection resulting in the migration of large numbers of larvae through many organs. Definitive diagnosis is still a challenge, and a combination of symptoms, microscopic identification, and serology test results are often used to arrive at a clinical decision. However, intermittent larval excretion, low parasite burden, and occult infections are challenges with parasitological diagnosis of infection with S. stercoralis. Meanwhile, serologic tests using immunoglobulin G and parasite antigen extract have problems of cross-reactivity with other helminthic infections. Recombinant antigen-based serodiagnosis is a good alternative to overcome the laboratory diagnostic issues. Herein, we report on the isolation of cDNA clone encoding an antigen of potential diagnostic value identified from immunoscreening of a S. stercoralis cDNA library. The translated protein had highest similarity to Strongyloides ratti immunoglobulin-binding protein 1. The recombinant antigen produced, rSs1a, was assessed using western blot and enzyme-linked immunosorbent assay. The latter showed 96% diagnostic sensitivity and 93% specificity; thus, rSs1a has good potential for use in serodiagnosis of human strongyloidiasis.
    Matched MeSH terms: Gene Library
  10. Lim VC, Ramli R, Bhassu S, Wilson JJ
    PLoS One, 2017;12(7):e0179555.
    PMID: 28742835 DOI: 10.1371/journal.pone.0179555
    Several published checklists of bat species have covered Peninsular Malaysia as part of a broader region and/or in combination with other mammal groups. Other researchers have produced comprehensive checklists for specific localities within the peninsula. To our knowledge, a comprehensive checklist of bats specifically for the entire geopolitical region of Peninsular Malaysia has never been published, yet knowing which species are present in Peninsular Malaysia and their distributions across the region are crucial in developing suitable conservation plans. Our literature search revealed that 110 bat species have been documented in Peninsular Malaysia; 105 species have precise locality records while five species lack recent and/or precise locality records. We retrieved 18 species from records dated before the year 2000 and seven species have only ever been recorded once. Our search of Barcode of Life Datasystems (BOLD) found that 86 (of the 110) species have public records of which 48 species have public DNA barcodes available from bats sampled in Peninsular Malaysia. Based on Neighbour-Joining tree analyses and the allocation of DNA barcodes to Barcode Index Number system (BINs) by BOLD, several DNA barcodes recorded under the same species name are likely to represent distinct taxa. We discuss these cases in detail and highlight the importance of further surveys to determine the occurences and resolve the taxonomy of particular bat species in Peninsular Malaysia, with implications for conservation priorities.
    Matched MeSH terms: Gene Library
  11. Amelia K, Singh J, Shah FH, Bhore SJ
    Pharmacognosy Res, 2015 Apr-Jun;7(2):209-12.
    PMID: 25829797 DOI: 10.4103/0974-8490.150536
    Common bean (Phaseolus vulgaris L.) is an important part of the human diet and serves as a source of natural products. Identification and understanding of genes in P. vulgaris is important for its improvement. Characterization of expressed sequence tags (ESTs) is one of the approaches in understanding the expressed genes. For the understanding of genes expression in P. vulgaris pod-tissue, research work of ESTs generation was initiated by constructing cDNA libraries using 5-day and 20-day old bean-pod-tissues. Altogether, 5972 cDNA clones were isolated to have ESTs. While processing ESTs, we found a transcript for calmodulin (CaM) gene. It is an important gene that encodes for a calcium-binding protein and known to express in all eukaryotic cells. Hence, this study was undertaken to analyse and annotate it.
    Matched MeSH terms: Gene Library
  12. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Gene Library
  13. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
    Matched MeSH terms: Gene Library
  14. Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, et al.
    Mol Microbiol, 2005 Jan;55(2):469-81.
    PMID: 15659164
    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
    Matched MeSH terms: Gene Library
  15. Noordin R, Aziz RA, Ravindran B
    Filaria journal, 2004 Dec 31;3(1):10.
    PMID: 15627400
    BACKGROUND: The recombinant antigen BmR1 has been extensively employed in both ELISA and immunochromatographic rapid dipstick (Brugia Rapid) formats for the specific and sensitive detection of IgG4 antibodies against the lymphatic filarial parasites Brugia malayi and Brugia timori. In sera of individuals infected with Wuchereria bancrofti the IgG4 reactivity to BmR1 is variable, and cross-reactivity of sera from individuals infected with Onchocerca volvulus or Loa loa was observed only in single cases. In order to characterize the homologs of the BmR1 antigen in W. bancrofti (Wb-BmR1), O. volvulus (Ov-BmR1) and L. loa (Ll-BmR1) the cDNA sequences were identified, the protein expressed and the antibody reactivity of patients' sera was studied. METHODS: PCR methodology was used to identify the cDNA sequences from cDNA libraries and/or genomic DNA of W. bancrofti, O. volvulus and L. loa. The clones obtained were sequenced and compared to the cDNA sequence of BmR1. Ov-BmR1 and Ll-BmR1 were expressed in E. coli and tested using an IgG4-ELISA with 262 serum samples from individuals with or without B. malayi, W. bancrofti, O. volvulus and L. loa infections or various other parasitic infections. BmR1, Ov-BmR1 and Ll-BmR1 were also tested for reactivity with the other three IgG subclasses in patients' sera. RESULTS: Wb-BmR1 was found to be identical to BmR1. Ov-BmR1 and Ll-BmR1 were found to be identical to each other and share 99.7% homology with BmR1. The pattern of IgG4 recognition of all serum samples to BmR1, Ov-BmR1 and Ll-BmR1 were identical. This included weak IgG4 reactivities demonstrated by L. loa- and O. volvulus-infected patients tested with Ov-BmR1 and Ll-BmR1 (or BmR1). With respect to reactivity to other IgG subclasses, sera from O. volvulus- and L. loa-infected patients showed positive reactions (when tested with BmR1, Ov-BmR1 or Ll-BmR1 antigens) only with IgG1. No reactivity was observed with IgG2 or with IgG3. Similarly, ELISAs to detect reactivity to other anti-filarial IgG subclasses antibodies showed that sera from individuals infected with B. malayi or W. bancrofti (active infections as well as patients with chronic disease) were positive with BmR1 only for IgG1 and were negative when tested with IgG2 and with IgG3 subclasses. CONCLUSIONS: This study demonstrates that homologs of the BmR1 antigen are present in W. bancrofti, O. volvulus and L. loa and that these antigens are highly conserved. Recognition of this antigen by patients' sera is similar with regard to IgG1, IgG2 and IgG3, but different for IgG4 antibodies. We conclude that the BmR1 antigen is suitable for detection of IgG4 antibodies in brugian filariasis. However, its homologs are not suitable for IgG4-based diagnosis of other filarial infections.
    Matched MeSH terms: Gene Library
  16. Chutrakul C, Peberdy JF
    FEMS Microbiol Lett, 2005 Nov 15;252(2):257-65.
    PMID: 16214297
    Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.
    Matched MeSH terms: Gene Library
  17. Cha TS, Habib Shah F
    Plant Sci, 2001 Apr;160(5):913-923.
    PMID: 11297788
    The mRNA differential display method was used to identify and isolate cDNAs corresponding to transcripts that accumulate during the period of lipid synthesis, 12-20 weeks after anthesis (WAA) in the kernel of Elaeis guineensis, var. Tenera. We successfully isolated two cDNA clones, KT7 (312 bp) and KT8 (266 bp). Interestingly, both clones show 79% nucleotide sequence identity to each other. This suggests that both clones encode the isoforms of the same protein. We screened the kernel (15 WAA) cDNA library and isolated the clone pKT7 (587 bp) using KT7 as probe, and isolated another isoform with KT8 probe, which designated as pKT9 (900 bp). Clone pKT9 has 93% nucleotide identity to KT8 and only 46% to pKT7 in their 3'-untranslated region. All three clones displayed significant amino acid sequence identity to seed storage protein glutelin from monocotyledon and globulin from dicotyledon plants. The coding sequence of KT8 (106 bp) shows 76 and 97% identity to pKT9 and pKT7, respectively. Therefore, we suggest that clones KT8 and pKT7 are members of the same subfamily (A), while pKT9 belongs to another subfamily (B) of glutelin multigene families. Southern analysis shows that there are at least four members for the subfamily B. Northern analysis shows that these three members of the glutelin family are co-ordinately expressed and developmentally regulated during the development of the kernel. The transcripts begin to accumulate at 12 WAA, increase in 15 WAA and show a significant reduction at 17 WAA.
    Matched MeSH terms: Gene Library
  18. Ng ST, Sanusi Jangi M, Shirley MW, Tomley FM, Wan KL
    Exp Parasitol, 2002 11 13;101(2-3):168-73.
    PMID: 12427472
    The protozoan parasite Eimeria tenella has a complex life cycle that includes two major asexual developmental stages, the merozoite and the sporozoite. The expressed sequence tag (EST) approach has been previously used to study gene expression of merozoites. We report here the generation and analysis of 556 ESTs from sporozoites. Comparative analyses of the two datasets reveal a number of transcripts that are preferentially expressed in a specific stage, including previously uncharacterised sequences. The data presented indicate the invaluable potential of the comparative EST analysis for providing information on gene expression patterns in the different developmental stages of E. tenella.
    Matched MeSH terms: Gene Library
  19. Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, et al.
    BMC Genomics, 2019 07 16;20(1):586.
    PMID: 31311515 DOI: 10.1186/s12864-019-5954-0
    BACKGROUND: Persicaria minor (kesum) is an herbaceous plant with a high level of secondary metabolite compounds, particularly terpenoids. These terpenoid compounds have well-established roles in the pharmaceutical and food industries. Although the terpenoids of P. minor have been studied thoroughly, the involvement of microRNA (miRNA) in terpenoid regulation remains poorly understood and needs to be explored. In this study, P. minor plants were inoculated with the pathogenic fungus Fusarium oxysporum for terpenoid induction.

    RESULT: SPME GC-MS analysis showed the highest terpenoid accumulation on the 6th day post-inoculation (dpi) compared to the other treatment time points (0 dpi, 3 dpi, and 9 dpi). Among the increased terpenoid compounds, α-cedrene, valencene and β-bisabolene were prominent. P. minor inoculated for 6 days was selected for miRNA library construction using next generation sequencing. Differential gene expression analysis showed that 58 miRNAs belonging to 30 families had significantly altered regulation.
    Among these 58 differentially expressed genes (DEGs), 27 [corrected] miRNAs were upregulated, whereas 31 [corrected] miRNAs were downregulated. Two putative novel pre-miRNAs were identified and validated through reverse transcriptase PCR. Prediction of target transcripts potentially involved in the mevalonate pathway (MVA) was carried out by psRobot software, resulting in four miRNAs: pmi-miR530, pmi-miR6173, pmi-miR6300 and a novel miRNA, pmi-Nov_13. In addition, two miRNAs, miR396a and miR398f/g, were predicted to have their target transcripts in the non-mevalonate pathway (MEP). In addition, a novel miRNA, pmi-Nov_12, was identified to have a target gene involved in green leaf volatile (GLV) biosynthesis. RT-qPCR analysis showed that pmi-miR6173, pmi-miR6300 and pmi-nov_13 were downregulated, while miR396a and miR398f/g were upregulated. Pmi-miR530 showed upregulation at 9 dpi, and dynamic expression was observed for pmi-nov_12. Pmi-6300 and pmi-miR396a cleavage sites were detected through degradome sequence analysis. Furthermore, the relationship between miRNA metabolites and mRNA metabolites was validated using correlation analysis.

    CONCLUSION: Our findings suggest that six studied miRNAs post-transcriptionally regulate terpenoid biosynthesis in P. minor. This regulatory behaviour of miRNAs has potential as a genetic tool to regulate terpenoid biosynthesis in P. minor.

    Matched MeSH terms: Gene Library
  20. Ngiow Shin Foong, Maha Abdullah, Jasmine Lim, Cheong Soon-Keng, Seow Heng-Fong
    MyJurnal
    Introduction: Current prognostic markers have improved survival prediction, however, it has not
    advanced treatment strategies. Gene expression profiling may identify biological markers suitable as
    therapeutic targets. Leukaemia stem cell is associated with adverse outcome, however, its biological
    characteristics are still being investigated. We observed higher in vitro cell viability in acute myeloid
    leukaemia (AML) samples with poor prognosis, which may be stem cell related. Objective: The
    objective of this study was to profile highly expressed genes in an AML sample of poor prognosis/high
    viability and compare with a sample of good prognosis/low viability. Method: Subtractive hybridization
    was performed on two AML samples with high blast counts (>80%), a poor prognosis, PP (disease free
    survival, DFS12 months) sample. The PP sample had
    higher CD34+ counts (73% vs 46%) and higher cell viability than the GP sample. cDNA libraries were
    subsequently cloned and sequenced. Results: cDNA subtracted from the PP samples was identified
    as genes active during fetal/embryonic development (LCOR, CNOT1, ORMDL1), HOX- related genes
    (HOXA3, PBX3, SF3B1), hematopoiesis (SELL, IL-3RA) and aerobic glycolysis/hypoxia (PGK1,
    HIGD1A) -associated genes. Majority of GP clones isolated contained genes involved in oxidative
    phosphorylation, OXPHOS (COXs, ATPs, MTND4 and MTRNR2), protein synthesis (including
    ribosomal proteins, initiating and elongation factors), chromatin remodeling (H2AFZ, PTMA), cell
    motility (MALAT1, CALM2, TMSB4X), and mitochondria (HSPA9, MPO) genes. Conclusion: Thus,
    the PP sample exhibited stem cell-like features while the GP sample showed cells at a high level of cell
    activity. These genes are potential prognostic markers and targets for therapy.
    Matched MeSH terms: Gene Library
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links