Displaying publications 21 - 40 of 91 in total

Abstract:
Sort:
  1. Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL
    Plant Cell Environ, 2019 05;42(5):1657-1673.
    PMID: 30549047 DOI: 10.1111/pce.13503
    Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
    Matched MeSH terms: Genes, Plant
  2. Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL
    Plant Cell Rep, 2012 Oct;31(10):1829-43.
    PMID: 22699852 DOI: 10.1007/s00299-012-1297-x
    RNA-binding proteins (RBPs) have been implicated as regulatory proteins involved in the post-transcriptional processes of gene expression in plants under various stress conditions. In this study, we report the cloning and characterization of a gene, designated as EgRBP42, encoding a member of the plant heterogeneous nuclear ribonucleoprotein (hnRNP)-like RBP family from oil palm (Elaeis guineensis Jacq.). EgRBP42 consists of two N-terminal RNA recognition motifs and a glycine-rich domain at the C-terminus. The upstream region of EgRBP42 has multiple light-responsive, stress-responsive regulatory elements and regulatory elements associated with flower development. Real-time RT-PCR analysis of EgRBP42 showed that EgRBP42 was expressed in oil palm tissues tested, including leaf, shoot apical meristem, root, female inflorescence, male inflorescence and mesocarp with the lowest transcript level in the roots. EgRBP42 protein interacted with transcripts associated with transcription, translation and stress responses using pull-down assay and electrophoretic mobility shift assay. The accumulation of EgRBP42 and its interacting transcripts were induced by abiotic stresses, including salinity, drought, submergence, cold and heat stresses in leaf discs. Collectively, the data suggested that EgRBP42 is a RBP, which responds to various abiotic stresses and could be advantageous for oil palm under stress conditions. Key message EgRBP42 may be involved in the post-transcriptional regulation of stress-related genes important for plant stress response and adaptation.
    Matched MeSH terms: Genes, Plant
  3. Tan YC, Wong MY, Ho CL
    Plant Physiol Biochem, 2015 Nov;96:296-300.
    PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014
    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
    Matched MeSH terms: Genes, Plant
  4. Sultana S, Khew CY, Morshed MM, Namasivayam P, Napis S, Ho CL
    J Plant Physiol, 2012 Feb 15;169(3):311-8.
    PMID: 22024734 DOI: 10.1016/j.jplph.2011.09.004
    Monodehydroascorbate reductase (MDHAR), an important enzyme of the ascorbate-glutathione cycle, is involved in salt tolerance of plants through scavenging of reactive oxygen species (ROS). In this study, a cDNA encoding MDHAR from the mangrove plant Acanthus ebracteatus was introduced into rice to examine its role in salt tolerance. Three stable transgenic lines (MT22, MT24 and MT25) overexpressing AeMDHAR were selected in vitro using hygromycin and confirmed by PCR, quantitative reverse-transcription (qRT) PCR and enzyme assay. The transgenic line MT24 was predicted to possess a single copy of the transgene while the other two transgenic lines were predicted to have multiple transgene integrations. The AeMDHAR transcripts were detected only in transgenic rice lines but not in untransformed rice. The abundance of AeMDHAR transcripts in transgenic lines MT22 and MT25 was approximately 2.75 times the amount found in MT24. The transgenic rice lines overexpressing AeMDHAR showed a significant increase in MDHAR enzyme activity compared to untransformed plants under both NaCl and control conditions. All transgenic lines showed better yield attributes such as a higher tiller number and increased 1000-grain weight compared to non-transgenics. They also showed tolerance to salt at germination and seedling stages. The transgenic line MT24, which harbors a single copy of AeMDHAR, displayed a lower rate of sterility, a higher number of tillers and longer panicle compared to untransformed plants when subjected to salt stress.
    Matched MeSH terms: Genes, Plant
  5. Tan J, Lim PE, Phang SM, Hong DD, Sunarpi H, Hurtado AQ
    PLoS One, 2012;7(12):e52905.
    PMID: 23285223 DOI: 10.1371/journal.pone.0052905
    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.
    Matched MeSH terms: Genes, Plant
  6. Lau ET, Khew CY, Hwang SS
    J Biotechnol, 2020 May 20;314-315:53-62.
    PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014
    Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
    Matched MeSH terms: Genes, Plant/genetics
  7. Sahebi M, Hanafi MM, Abdullah SN, Rafii MY, Azizi P, Nejat N, et al.
    Biomed Res Int, 2014;2014:971985.
    PMID: 24516858 DOI: 10.1155/2014/971985
    Silicon (Si) is the second most abundant element in soil after oxygen. It is not an essential element for plant growth and formation but plays an important role in increasing plant tolerance towards different kinds of abiotic and biotic stresses. The molecular mechanism of Si absorption and accumulation may differ between plants, such as monocotyledons and dicotyledons. Silicon absorption and accumulation in mangrove plants are affected indirectly by some proteins rich in serine and proline amino acids. The expression level of the genes responsible for Si absorption varies in different parts of plants. In this study, Si is mainly observed in the epidermal roots' cell walls of mangrove plants compared to other parts. The present work was carried out to discover further information on Si stress responsive genes in Rhizophora apiculata, using the suppression subtractive hybridization technique. To construct the cDNA library, two-month-old seedlings were exposed to 0.5, 1, and 1.5 mM SiO2 for 15 hrs and for 1 to 6 days resulting in a total of 360 high quality ESTs gained. Further examination by RT-PCR and real-time qRT-PCR showed the expression of a candidate gene of serine-rich protein.
    Matched MeSH terms: Genes, Plant/genetics*
  8. Masura SS, Parveez GK, Ismail I
    N Biotechnol, 2010 Sep 30;27(4):289-99.
    PMID: 20123048 DOI: 10.1016/j.nbt.2010.01.337
    The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.
    Matched MeSH terms: Genes, Plant/genetics*
  9. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, et al.
    PLoS One, 2017;12(4):e0176158.
    PMID: 28430826 DOI: 10.1371/journal.pone.0176158
    The development of timber tracking methods based on genetic markers can provide scientific evidence to verify the origin of timber products and fulfill the growing requirement for sustainable forestry practices. In this study, the origin of an important Dark Red Meranti wood, Shorea platyclados, was studied by using the combination of seven chloroplast DNA and 15 short tandem repeats (STRs) markers. A total of 27 natural populations of S. platyclados were sampled throughout Malaysia to establish population level and individual level identification databases. A haplotype map was generated from chloroplast DNA sequencing for population identification, resulting in 29 multilocus haplotypes, based on 39 informative intraspecific variable sites. Subsequently, a DNA profiling database was developed from 15 STRs allowing for individual identification in Malaysia. Cluster analysis divided the 27 populations into two genetic clusters, corresponding to the region of Eastern and Western Malaysia. The conservativeness tests showed that the Malaysia database is conservative after removal of bias from population subdivision and sampling effects. Independent self-assignment tests correctly assigned individuals to the database in an overall 60.60-94.95% of cases for identified populations, and in 98.99-99.23% of cases for identified regions. Both the chloroplast DNA database and the STRs appear to be useful for tracking timber originating in Malaysia. Hence, this DNA-based method could serve as an effective addition tool to the existing forensic timber identification system for ensuring the sustainably management of this species into the future.
    Matched MeSH terms: Genes, Plant*
  10. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
    Matched MeSH terms: Genes, Plant
  11. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA
    Crit Rev Biotechnol, 2016;36(2):353-67.
    PMID: 25394538 DOI: 10.3109/07388551.2014.961403
    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.
    Matched MeSH terms: Genes, Plant/genetics*
  12. Khan MA, Sen PP, Bhuiyan R, Kabir E, Chowdhury AK, Fukuta Y, et al.
    C. R. Biol., 2014 May;337(5):318-24.
    PMID: 24841958 DOI: 10.1016/j.crvi.2014.02.007
    Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012-2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh.
    Matched MeSH terms: Genes, Plant/genetics
  13. Bahari M, Rafii MY, Saleh GB, Latif MA
    ScientificWorldJournal, 2012;2012:543158.
    PMID: 22566772 DOI: 10.1100/2012/543158
    The experiments were carried out in two research stations (MARDI Bukit Tangga, Kedah, and MARDI Seberang Perai, Penang) in Malaysia. The crossings were performed using the four inbred lines in complete diallel cross including selfs and reciprocals. We evaluated the yield components and fruit characters such as fruit yield per plant, vine length, days to fruit maturity, fruit weight, total soluble solid content, and rind thickness over a period of two planting seasons. General combining ability and its interaction with locations were statistically significant for all characteristics except number of fruits per plant across the environments. Results indicated that the additive genetic effects were important to the inheritance of these traits and the expression of additive genes was influenced greatly by environments. In addition, specific combining ability effect was statistically evident for fruit yield per plant, vine length, days to first female flower, and fruit weight. Most of the characters are simultaneously controlled by additive and nonadditive gene effects. This study demonstrated that the highest potential and promising among the crosses was cross P2 (BL-14) × P3 (6372-4), which possessed prolific plants, with early maturity, medium fruit weight and high soluble solid contents. Therefore this hybrid might be utilized for developing high yielding watermelon cultivars and may be recommended for commercial cultivation.
    Matched MeSH terms: Genes, Plant
  14. Ashkani S, Rafii MY, Rahim HA, Latif MA
    Biotechnol Lett, 2013 May;35(5):799-810.
    PMID: 23315158 DOI: 10.1007/s10529-012-1130-1
    Malaysian rice, Pongsu Seribu 2, has wide-spectrum resistance against blast disease. Chromosomal locations conferring quantitative resistance were detected by linkage mapping with SSRs and quantitative trait locus (QTL) analysis. For the mapping population, 188 F3 families were derived from a cross between the susceptible cultivar, Mahsuri, and a resistant variety, Pongsu Seribu 2. Partial resistance to leaf blast in the mapping population was assessed. A linkage map covering ten chromosomes and consisting of 63 SSR markers was constructed. 13 QTLs, including 6 putative and 7 putative QTLs, were detected on chromosomes 1, 2, 3, 5, 6, 10, 11 and 12. The resulting phenotypic variation due to a single QTL ranged from 2 to 13 %. These QTLs accounted for approx. 80 % of the total phenotypic variation within the F3 population. Therefore, partial resistance to blast in Pongsu Seribu 2 is due to combined effects of multiple loci with major and minor effects.
    Matched MeSH terms: Genes, Plant/genetics*
  15. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, et al.
    J Sci Food Agric, 2016 Mar 15;96(4):1297-305.
    PMID: 25892666 DOI: 10.1002/jsfa.7222
    Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection.
    Matched MeSH terms: Genes, Plant
  16. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA
    C. R. Biol., 2015 May;338(5):321-34.
    PMID: 25843222 DOI: 10.1016/j.crvi.2015.03.001
    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.
    Matched MeSH terms: Genes, Plant/genetics
  17. Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, et al.
    Gigascience, 2019 03 01;8(3).
    PMID: 30535374 DOI: 10.1093/gigascience/giy152
    BACKGROUND: The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the majority of calories. Therefore, to diversify and stabilize the global food supply, enhance agricultural productivity, and tackle malnutrition, greater use of neglected or underutilized local plants (so-called orphan crops, but also including a few plants of special significance to agriculture, agroforestry, and nutrition) could be a partial solution.

    RESULTS: Here, we present draft genome information for five agriculturally, biologically, medicinally, and economically important underutilized plants native to Africa: Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera. Assembled genomes range in size from 217 to 654 Mb. In V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, we have predicted 31,707, 20,946, 28,979, 18,937, and 18,451 protein-coding genes, respectively. By further analyzing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors, and starch biosynthesis-related genes in these genomes.

    CONCLUSIONS: These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused, and predictable crop improvement programs.

    Matched MeSH terms: Genes, Plant
  18. Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, et al.
    Biol. Direct, 2017 Sep 08;12(1):21.
    PMID: 28886750 DOI: 10.1186/s13062-017-0191-4
    BACKGROUND: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools.

    RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.

    CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops.

    REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

    Matched MeSH terms: Genes, Plant
  19. Vasconcelos TNC, Proença CEB, Ahmad B, Aguilar DS, Aguilar R, Amorim BS, et al.
    Mol Phylogenet Evol, 2017 04;109:113-137.
    PMID: 28069533 DOI: 10.1016/j.ympev.2017.01.002
    Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.
    Matched MeSH terms: Genes, Plant
  20. Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA
    Plant Cell Rep, 2008 Sep;27(9):1451-9.
    PMID: 18563415 DOI: 10.1007/s00299-008-0565-2
    The promoter of the oil palm metallothionein-like gene (MT3-A) demonstrated mesocarp-specific activity in functional analysis using transient expression assay of reporter gene in bombarded oil palm tissue slices. In order to investigate the tissue-specific expression of polyhydroxybutyrate (PHB) biosynthetic pathway genes, a multi-gene construct carrying PHB genes fused to the oil palm MT3-A promoter was co-transferred with a construct carrying GFP reporter gene using microprojectile bombardment targeting the mesocarp and leaf tissues of the oil palm. Transcriptional analysis using RT-PCR revealed successful transcription of all the three phbA, phbB, and phbC genes in transiently transformed mesocarp but not in transiently transformed leaf tissues. Furthermore, all the three expected sizes of PHB-encoded protein products were only detected in transiently transformed mesocarp tissues on a silver stained polyacrylamide gel. Western blot analysis using polyclonal antibody specific for phbB product confirmed successful translation of phbB mRNA transcript into protein product. This study provided valuable information, supporting the future engineering of PHB-producing transgenic palms.
    Matched MeSH terms: Genes, Plant
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links