OBJECTIVE: The aim of the study was to summarize findings from the available literature to provide up-to-date information on sclerosing odontogenic carcinoma and to analyse clinical, radiological, and histopathological features to obtain information for and against as an odontogenic malignancy.
METHODS: We conducted a comprehensive review of literature by searching Pubmed, EBSCO and Web of Science databases, according to PRISMA guidelines. All the cases reported as sclerosing odontogenic carcinoma in English were included. Data retrieved from the articles were gender, age, clinical features, site, relevant medical history, radiographical findings, histopathological findings, immunohistochemical findings, treatments provided and prognosis.
RESULTS: Mean age at diagnosis of sclerosing odontogenic carcinoma was 54.4 years with a very slight female predilection. Sclerosing odontogenic carcinoma was commonly reported in the mandible as an expansile swelling which can be asymptomatic or associated with pain or paraesthesia. They appeared radiolucent with cortical resorption in radiograph evaluation. Histologically, sclerosing odontogenic carcinoma was composed of epithelioid cells in dense, fibrous, or sclerotic stroma with equivocal perineural invasion. Mild cellular atypia and inconspicuous mitotic activity were observed. There is no specific immunohistochemical marker for sclerosing odontogenic carcinoma. AE1/AE3, CK 5/6, CK 14, CK19, p63 and E-cadherin were the widely expressed markers for sclerosing odontogenic carcinoma. Surgical resection was the main treatment provided with no recurrence in most cases. No cases of metastasis were reported.
CONCLUSION: From the literature available, sclerosing odontogenic carcinoma is justifiable as a malignant tumor with no or unknown metastatic potential which can be adequately treated with surgical resection. However, there is insufficient evidence for histological grading or degree of malignancy of this tumor.
METHODS: Oral cancer cell lines and a normal oral keratinocyte cell line were used together with tissue samples of normal oral mucosa (n = 21), oral epithelial dysplasia (n = 74) and early stage (Stages I and II) oral squamous cell carcinoma (n = 31). Immunocytochemical staining, immunoblotting and real-time quantitative polymerase chain reaction (PCR) were performed to assess protein as well as gene expression levels.
RESULTS: The expression levels of Epsin3 and Notch1 mRNA and protein are variable across different oral squamous cell carcinoma derived cell lines. Epsin3 was upregulated in oral epithelial dysplasia and oral squamous cell carcinoma tissues compared with normal epithelium. Overexpression of Epsin3 resulted in a significant reduction of Notch1 expression in oral squamous cell carcinoma. Notch1 was generally downregulated in the dysplasia and oral squamous cell carcinoma samples.
CONCLUSION: Epsin3 is upregulated in oral epithelial dysplasia and oral squamous cell carcinoma and has the potential to be used as a biomarker for oral epithelial dysplasia. Notch signalling is downregulated in oral squamous cell carcinoma, possibly through an Epsin3-induced de-activation pathway.
PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line.
MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented.
RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing.
CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.