Displaying publications 21 - 40 of 107 in total

Abstract:
Sort:
  1. Gautam A, Paudel YN, Abidin S, Bhandari U
    Hum Exp Toxicol, 2019 Mar;38(3):356-370.
    PMID: 30526076 DOI: 10.1177/0960327118817862
    The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine-N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC-MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.
    Matched MeSH terms: Kidney/drug effects
  2. Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, et al.
    PMID: 30659555 DOI: 10.2174/1871530319666190119101058
    BACKGROUND: Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature.

    OBJECTIVE: To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats.

    METHODS: Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO.

    RESULTS: There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control.

    CONCLUSION: The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.

    Matched MeSH terms: Kidney/drug effects
  3. Garcia S, Bhatt DL, Gallagher M, Jneid H, Kaufman J, Palevsky PM, et al.
    JACC Cardiovasc Interv, 2018 11 26;11(22):2254-2261.
    PMID: 30466822 DOI: 10.1016/j.jcin.2018.07.044
    OBJECTIVES: The aim of this study was to compare intravenous (IV) sodium bicarbonate with IV sodium chloride and oral acetylcysteine with placebo for the prevention of contrast-associated acute kidney injury (CAAKI) and intermediate-term adverse outcomes.

    BACKGROUND: Data are conflicting on the optimal strategy to reduce CAAKI and related complications after percutaneous coronary intervention (PCI).

    METHODS: The PRESERVE (Prevention of Serious Adverse Events Following Angiography) trial used a 2 × 2 factorial design to randomize 5,177 patients with stage III or IV chronic kidney disease undergoing angiography to IV 1.26% sodium bicarbonate or IV 0.9% sodium chloride and 5 days of oral acetylcysteine or placebo. A subgroup analysis was conducted of the efficacy of these interventions in patients who underwent PCI during the study angiographic examination. The primary endpoint was a composite of death, need for dialysis, or persistent kidney impairment at 90 days; CAAKI was a secondary endpoint.

    RESULTS: A total of 1,161 PRESERVE patients (mean age 69 ± 8 years) underwent PCI. The median estimated glomerular filtration rate was 50.7 ml/min/1.73 m2 (interquartile range: 41.7 to 60.1 ml/min/1.73 m2), and 952 patients (82%) had diabetes mellitus. The primary endpoint occurred in 15 of 568 patients (2.6%) in the IV sodium bicarbonate group and 24 of 593 patients (4.0%) in the IV sodium chloride group (odds ratio: 0.64; 95% confidence interval: 0.33 to 1.24; p for interaction = 0.41) and in 23 of 598 patients (3.8%) in the acetylcysteine group and 16 of 563 patients (2.8%) in the placebo group (odds ratio: 1.37; 95% confidence interval: 0.71 to 2.62; p for interaction = 0.29). There were no significant between-group differences in the rates of CAAKI.

    CONCLUSIONS: Among patients with CKD undergoing PCI, there was no benefit of IV sodium bicarbonate over IV sodium chloride or of acetylcysteine over placebo for the prevention of CAAKI or intermediate-term adverse outcomes.

    Matched MeSH terms: Kidney/drug effects*
  4. Joshi K, Boettiger D, Kerr S, Nishijima T, Van Nguyen K, Ly PS, et al.
    Pharmacoepidemiol Drug Saf, 2018 Nov;27(11):1209-1216.
    PMID: 30246898 DOI: 10.1002/pds.4657
    PURPOSE: Renal disease is common among people living with human immunodeficiency virus (HIV). However, there is limited information on the incidence and risk factors associated with renal dysfunction among this population in Asia.

    METHODS: We used data from the TREAT Asia HIV Observational Database. Patients were included if they started antiretroviral therapy during or after 2003, had a serum creatinine measurement at antiretroviral therapy initiation (baseline), and had at least 2 follow-up creatinine measurements taken ≥3 months apart. Patients with a baseline estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73 m2 were excluded. Chronic kidney disease was defined as 2 consecutive eGFR values ≤60 mL/min/1.73 m2 taken ≥3 months apart. Generalized estimating equations were used to identify factors associated with eGFR change. Competing risk regression adjusted for study site, age and sex, and cumulative incidence plots were used to evaluate factors associated with chronic kidney disease (CKD).

    RESULTS: Of 2547 patients eligible for this analysis, tenofovir was being used by 703 (27.6%) at baseline. Tenofovir use, high baseline eGFR, advanced HIV disease stage, and low nadir CD4 were associated with a decrease in eGFR during follow-up. Chronic kidney disease occurred at a rate of 3.4 per 1000 patient/years. Factors associated with CKD were tenofovir use, old age, low baseline eGFR, low nadir CD4, and protease inhibitor use.

    CONCLUSIONS: There is an urgent need to enhance renal monitoring and management capacity among at-risk groups in Asia and improve access to less nephrotoxic antiretrovirals.

    Matched MeSH terms: Kidney/drug effects*
  5. Choong CL, Wong HS, Lee FY, Lee CK, Kho JV, Lai YX, et al.
    Transplant Proc, 2018 Oct;50(8):2515-2520.
    PMID: 30316389 DOI: 10.1016/j.transproceed.2018.04.024
    BACKGROUND: Inhibition of calcineurin inhibitor (CNI) metabolism with diltiazem reduces the dose of tacrolimus required to achieve its therapeutic blood concentration in kidney transplant recipients (KTRs). This cost-savings maneuver is practiced in several countries, including Malaysia, but the actual impacts of diltiazem on tacrolimus blood concentration, dose-response relationship, cost-savings, and safety aspects are unknown.

    METHODS: This retrospective study was performed on all KTRs ≥18 years of age at our center from January 1, 2006 to December 31, 2015, who were prescribed diltiazem as tacrolimus-sparing agent. Blood tacrolimus trough level (TacC0) and other relevant clinical data for 70 eligible KTRs were reviewed.

    RESULTS: The dose of 1 mg tacrolimus resulted in a median TacC0 of 0.83 ± 0.52 ng/mL. With the introduction of a 90-mg/d dose diltiazem, there was a significant TacC0 increase to 1.39 ± 1.31 ng/mL/mg tacrolimus (P < .01). A further 90-mg increase in diltiazem to 180 mg/d resulted in a further increase of TacC0 to 1.66 ± 2.58 ng/mL/mg tacrolimus (P = .01). After this, despite a progressive increment of every 90-mg/d dose diltiazem to 270 mg/d and 360 mg/d, there was no further increment in TacC0 (1.44 ± 1.15 ng/mL/mg tacrolimus and 1.24 ± 0.94 ng/mL/mg tacrolimus, respectively [P < .01]). Addition of 180 mg/d diltiazem reduced the required tacrolimus dose to 4 mg/d, resulting in a cost-savings of USD 2045.92 per year (per patient) at our center. Adverse effects reported within 3 months of diltiazem introduction were bradycardia (1.4%) and postural hypotension (1.4%), which resolved after diltiazem dose reduction.

    CONCLUSION: Coadministration of tacrolimus and diltiazem in KTRs appeared to be safe and resulted in a TacC0 increment until reaching a 180-mg/d total diltiazem dose, at which point it began to decrease. This approach will result in a marked savings in immunosuppression costs among KTRs in Malaysia.

    Matched MeSH terms: Kidney/drug effects
  6. Tan SMQ, Chiew Y, Ahmad B, Kadir KA
    Nutrients, 2018 Sep 17;10(9).
    PMID: 30227659 DOI: 10.3390/nu10091315
    Tocotrienol-rich vitamin E from palm oil (Tocovid) has been shown to ameliorate diabetes through its superior antioxidant, antihyperglycemic, and anti-inflammatory properties in diabetic rats. This study aimed to investigate the effects of Tocovid on diabetic nephropathy in patients with type 2 diabetes. Baseline parameters of potential subjects such as HbA1c, blood pressure, Advanced Glycation Endproduct (AGE), soluble receptor for AGE (sRAGE), Nε-Carboxymethyllysine (Nε-CML), and Cystatin C were assessed for possible correlation with diabetic nephropathy. Only subjects with diabetic nephropathy or urine microalbuminuria-positive defined as Urine Albumin to Creatinine Ratio (UACR) >10 mg/mmol were recruited into a prospective, randomized, double-blinded, placebo-controlled trial. The intervention group (n = 22) received Tocovid 200 mg twice a day while the control group (n = 23) received placebo twice a day for 8 weeks. Changes in Hemoglobin A1c (HbA1c), blood pressure, serum biomarkers and renal parameters such as UACR, serum creatinine, and estimated Glomerular Filtration Rate (eGFR) were compared between the two groups. It was found that serum Nε-CML significantly correlated to the severity of microalbuminuria. For every 1 ng/mL increase in serum Nε-CML, the odds of diabetic nephropathy increased by 1.476 times. Tocovid, compared to placebo, significantly reduced serum creatinine but not eGFR, UACR, HbA1c, blood pressure, and serum biomarkers. In conclusion, serum Nε-CML is a potential biomarker for diabetic nephropathy. Treatment with Tocovid significantly reduced serum creatinine; therefore Tocovid may be a useful addition to the current treatment for diabetic nephropathy.
    Matched MeSH terms: Kidney/drug effects*
  7. Subramaniyan V, Shaik S, Bag A, Manavalan G, Chandiran S
    Pak J Pharm Sci, 2018 Mar;31(2):509-516.
    PMID: 29618442
    To determine the ameliorative potential of the active fraction from different extracts of Rumex vesicarius against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats and its possible mechanism of action. Both sex wistar rats were divided into 6 groups (n=6/group) were fed with a control, potassium dichromate and gentamicin supplemented with different extracts at the doses of 200 and 400mg/kg respectively. Oral administration of EERV offered a significant (p<0.01 and p<0.001) dose dependent protection against PD and GN induced nephrotoxicity. Potassium dichromate and gentamicin nephrotoxicity assessed in terms of body weight, kidney weight, creatinine, urea, uric acid, BUN, albumin and total protein. Thus the present study revealed that EERV phytochemical constituents play an important role in protection against kidney damage.
    Matched MeSH terms: Kidney/drug effects
  8. Al-Afifi NA, Alabsi AM, Bakri MM, Ramanathan A
    BMC Complement Altern Med, 2018 Feb 05;18(1):50.
    PMID: 29402248 DOI: 10.1186/s12906-018-2110-3
    BACKGROUND: Dracaena cinnabari (DC) is a perennial tree that located on the Southern coast of Yemen native to the Socotra Island. This tree produces a deep red resin known as the Dragon's blood, the Twobrother's Blood or Damm Alakhwain. The current study performed to evaluate the safety of the DC resin methanol extract after a single or 28 consecutive daily oral administrations.

    METHODS: In assessing the safety of DC resin methanol extract, acute and sub-acute oral toxicity tests performed following OECD guidelines 423 and 407, respectively, with slight modifications. In acute oral toxicity test, DC resin methanol extract administered to female Sprague Dawley rats by oral gavage at a single dose of 300 and 2000 mg/kg body weight. Rats observed for toxic signs for 14 days. In sub-acute oral toxicity test, DC resin methanol extract administered to the rats by oral gavage at 500, 1000, and 1500 mg/kg body weight daily up to 28 days to male and female Spradgue Dawley rats. The control and high dose in satellite groups were also maintained and handled as the previous groups to determine the late onset toxicity of DC resin methanol extract. At the end of each test, hematological and biochemical analysis of the collected blood were performed as well as gross and microscopic pathology.

    RESULTS: In acute oral toxicity, no treatment-related death or toxic signs were observed. It revealed that the DC resin methanol extract could be well tolerated up to the dose 2000 mg/kg body weight and could be classified as Category 5. The sub-acute test observations indicated that there are no treatment-related changes up to the high dose level compared to the control. Food consumption, body weight, organ weight, hematological parameters, biochemical parameters and histopathological examination (liver, kidney, heart, spleen and lung) revealed no abnormalities. Water intake was significantly higher in the DC resin methanol extract treated groups compared to the control.

    CONCLUSION: This study demonstrates tolerability of DC resin methanol extract administered daily for 28 days up to 1500 mg/kg dose.

    Matched MeSH terms: Kidney/drug effects
  9. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Kidney/drug effects
  10. Al-Zuaidy MH, Mumtaz MW, Hamid AA, Ismail A, Mohamed S, Razis AFA
    BMC Complement Altern Med, 2017 Jul 10;17(1):359.
    PMID: 28693595 DOI: 10.1186/s12906-017-1849-2
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by continuous hyperglycemia associated with insulin resistance and /or reduced insulin secretion. There is an emerging trend regarding the use of medicinal plants for the treatment of diabetes mellitus. Melicope lunu-ankenda (ML) is one of the Melicope species belonging to the family Rutaceae. In traditional medicines, its leaves and flowers are known to exhibit prodigious health benefits. The present study aimed at investigating anti-diabetic effect of Melicope lunu-ankenda (ML) leaves extract.

    METHODS: In this study, anti-diabetic effect of ML extract is investigated in vivo to evaluate the biochemical changes, potential serum biomarkers and alterations in metabolic pathways pertaining to the treatment of HFD/STZ induced diabetic rats with ML extract using 1H NMR based metabolomics approach. Type 2 diabetic rats were treated with different doses (200 and 400 mg/kg BW) of Melicope lunu-ankenda leaf extract for 8 weeks, and serum samples were examined for clinical biochemistry. The metabolomics study of serum was also carried out using 1H NMR spectroscopy in combination with multivariate data analysis to explore differentiating serum metabolites and altered metabolic pathways.

    RESULTS: The ML leaf extract (400 mg/kg BW) treatment significantly increased insulin level and insulin sensitivity of obese diabetic rats, with concomitant decrease in glucose level and insulin resistance. Significant reduction in total triglyceride, cholesterol and low density lipoprotein was also observed after treatment. Interestingly, there was a significant increase in high density lipoprotein of the treated rats. A decrease in renal injury markers and activities of liver enzymes was also observed. Moreover, metabolomics studies clearly demonstrated that, ML extract significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism.

    CONCLUSION: ML leaf extract exhibits potent antidiabetic properties, hence could be a useful and affordable alternative option for the management of T2DM.

    Matched MeSH terms: Kidney/drug effects
  11. Loh SY, Giribabu N, Salleh N
    Exp Biol Med (Maywood), 2017 07;242(13):1376-1386.
    PMID: 28399644 DOI: 10.1177/1535370217703360
    We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.
    Matched MeSH terms: Kidney/drug effects
  12. Khan YH, Sarriff A, Adnan AS, Khan AH, Mallhi TH
    Clin Exp Nephrol, 2017 Jun;21(3):488-496.
    PMID: 27402286 DOI: 10.1007/s10157-016-1303-7
    INTRODUCTION: The relationship between hypertension and fluid overload in pre-dialysis CKD patients need to be elucidated. Current study aimed to find relationship between fluid overload and hypertension along with prescribed diuretic therapy using bioimpedance spectroscopy (BIS).

    METHODOLOGY: A prospective observational study was conducted by inviting pre-dialysis CKD patients. Fluid overload was assessed by BIS.

    RESULTS: A total of 312 CKD patients with mean eGFR 24.5 ± 11.2 ml/min/1.73 m2were enrolled. Based on OH value ≥7 %, 135 (43.3 %) patients were hypervolemic while euvolemia was observed in 177 (56.7 %) patients. Patients were categorized in different regions of hydration reference plot (HRP) generated by BIS i.e., 5.1 % in region-N (normal BP and fluid status), 20.5 % in region I (hypertensive with severe fluid overload), 29.5 % in region I-II (hypertensive with mild fluid overload), 22 % in region II (hypertensive with normohydration), 10.2 % in region III (underhydration with normal/low BP) and 12.5 % in region IV (normal BP with severe fluid overload). A total of 144 (46 %) patients received diuretics on basis of physician assessment of BP and edema. Maximum diuretics 100 (69.4 %) were prescribed in patients belonging to regions I and I-II of HRP. Interestingly, a similar number of diuretic prescriptions were observed in region II (13 %) and region IV (12 %). Surprisingly, 7 (4.9 %) of patients in region III who were neither hypervolemic nor hypertensive were also prescribed with diuretics.

    CONCLUSION: BIS can aid clinicians to categorize CKD patients on basis of their fluid status and provide individualized pharmacotherapy to manage hypertensive CKD patients.

    Matched MeSH terms: Kidney/drug effects
  13. Rajandram R, Yap NY, Ong TA, Mun KS, Mohamad Wali HA, Hasan MS, et al.
    Malays J Pathol, 2017 Apr;39(1):47-53.
    PMID: 28413205 MyJurnal
    INTRODUCTION: In recent years, prolonged ketamine abuse has been reported to cause urinary tract damage. However, there is little information on the pathological effects of ketamine from oral administration. We aimed to study the effects of oral ketamine on the urinary tract and the reversibility of these changes after cessation of ketamine intake.

    METHODS: Rats were fed with illicit (a concoction of street ketamine) ketamine in doses of 100 (N=12), or 300 mg/kg (N=12) for four weeks. Half of the rats were sacrificed after the 4-week feeding for necropsy. The remaining rats were taken off ketamine for 8 weeks to allow for any potential recovery of pathological changes before being sacrificed for necropsy. Histopathological examination was performed on the kidney and urinary bladder.

    RESULTS: Submucosal bladder inflammation was seen in 67% of the rats fed with 300 mg/kg illicit ketamine. No bladder inflammation was observed in the control and 100 mg/kg illicit ketamine groups. Renal changes, such as interstitial nephritis and papillary necrosis, were observed in rats given illicit ketamine. After ketamine cessation, no inflammation was observed in the bladder of all rats. However, renal inflammation remained in 60% of the rats given illicit ketamine. No dose-effect relationship was established between oral ketamine and changes in the kidneys.

    CONCLUSION: Oral ketamine caused pathological changes in the urinary tract, similar to that described in exposure to parenteral ketamine. The changes in the urinary bladder were reversible after short-term exposure.

    Matched MeSH terms: Kidney/drug effects
  14. Silva MS, Lúcio-Oliveira F, Mecawi AS, Almeida LF, Ruginsk SG, Greenwood MP, et al.
    Physiol Rep, 2017 Mar;5(6).
    PMID: 28336818 DOI: 10.14814/phy2.13210
    Excessive sodium (Na+) intake in modern society has been associated with several chronic disorders such as hypertension. Several studies suggest that early life events can program physiological systems and lead to functional changes in adulthood. Therefore, we investigated behavioral and neuroendocrine responses under basal conditions and after 48 h of water deprivation in adult (60-day-old Wistar rats) male, Wistar rats originating from dams were offered only water or 0.15 mol/L NaCl during pregnancy and lactation. Early life salt exposure induced kidney damage, as shown by a higher number of ED-1 positive cells (macrophages/monocytes), increased daily urinary volume and Na+ excretion, blunted basal water intake and plasma oxytocin levels, and increased plasma corticosterone secretion. When challenged with water deprivation, animals exposed to 0.15 mol/L NaCl during early life showed impaired water intake, reduced salt preference ratio, and vasopressin (AVP) secretion. In summary, our data demonstrate that the perinatal exposure to excessive Na+ intake can induce kidney injury in adult offspring and significantly affect the key mechanisms regulating water balance, fluid intake, and AVP release in response to water deprivation. Collectively, these novel results highlight the impact of perinatal programming on the homeostatic mechanisms regulating fluid and electrolyte balance during exposure to an environmental stress (i.e. dehydration) in later life.
    Matched MeSH terms: Kidney/drug effects*
  15. Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, et al.
    Regul Toxicol Pharmacol, 2017 Mar;84:35-44.
    PMID: 27993652 DOI: 10.1016/j.yrtph.2016.12.007
    This study investigated the pretreatment and post-treatment effects of dipyridamole (20 mg/kg/day, p.o.) in gentamicin-induced acute nephrotoxicity in rats. Rats were administered gentamicin (100 mg/kg/day, i.p.) for 8 days. Gentamicin-administered rats exhibited renal structural and functional changes as assessed in terms of a significant increase in serum creatinine and urea and kidney weight to body weight ratio as compared to normal rats. Renal histopathological studies revealed a marked incidence of acute tubular necrosis in gentamicin-administered rats. These renal structural and functional abnormalities in gentamicin-administered rats were accompanied with elevated serum uric acid level, and renal inflammation as assessed in terms of decrease in interleukin-10 levels. Dipyridamole pretreatment in gentamicin-administered rats afforded a noticeable renoprotection by markedly preventing renal structural and functional abnormalities, renal inflammation and serum uric acid elevation. On the other hand, dipyridamole post-treatment did not significantly prevent uric acid elevation and renal inflammation, and resulted in comparatively less protection on renal function although it markedly reduced the incidence of tubular necrosis. In conclusion, uric acid elevation and renal inflammation could play key roles in gentamicin-nephrotoxicity. Dipyridamole pretreatment markedly prevented gentamicin-induced acute nephrotoxicity, while its post-treatment resulted in comparatively less renal functional protection.
    Matched MeSH terms: Kidney/drug effects*
  16. Gholami K, Loh SY, Salleh N, Lam SK, Hoe SZ
    PLoS One, 2017;12(6):e0176368.
    PMID: 28591185 DOI: 10.1371/journal.pone.0176368
    Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies.
    Matched MeSH terms: Kidney/drug effects
  17. Gupta G, Chellappan DK, Kikuchi IS, Pinto TJA, Pabreja K, Agrawal M, et al.
    J Environ Pathol Toxicol Oncol, 2017;36(2):113-119.
    PMID: 29199592 DOI: 10.1615/JEnvironPatholToxicolOncol.2017019457
    Paracetamol (PCM) has an acceptable safety profile when used at prescribed doses. However, it is now understood that paracetamol can damage the kidneys when administered as an overdose. In addition, oxidative stress can play a major role in causing nephrotoxicity. This investigation studies the efficacy of moralbosteroid isolated from M. alba stem bark. Nephrotoxicity was induced with administration of paracetamol. Nephroprotection was studied using two doses of the extract. The experimental animals were divided into four groups (n = 6). Two groups served as positive and negative controls, respectively, and two received the test substances. All of the contents were orally administered. Significant reductions in nephrotoxicity and oxidative damages were observed in the treatment groups. There was a marked decrease in blood levels of urea, creatinine, and lipid peroxidation. Furthermore, it was found that glutathione levels in the blood increased dramatically after treatment. Histological findings confirmed the potent renoprotective potential of moralbosteroid. This was evidenced by the minimized intensity of nephritic cellular destruction. In animal studies, moralbosteroid exhibited dose-dependent activity, which is thought to be mediated through its antioxidant potential.
    Matched MeSH terms: Kidney/drug effects*
  18. Afzal S, Sattar MA, Johns EJ, Abdulla MH, Akhtar S, Hashmi F, et al.
    J Physiol Biochem, 2016 Dec;72(4):593-604.
    PMID: 27405250
    Adiponectin exerts vasodilatory effects. Irbesartan, an angiotensin receptor blocker, possesses partial peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist activity and increases circulating adiponectin. This study explored the effect of irbesartan alone and in combination with adiponectin on blood pressure, renal hemodynamic excretory function, and vasoactive responses to angiotensin II and adrenergic agonists in spontaneously hypertensive rat (SHR). Irbesartan was given orally (30 mg/kg/day) for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Groups of SHR received either irbesartan or adiponectin or in combination. A group of Wistar Kyoto rats (WKY) served as controls. Metabolic data and plasma samples were taken on days 0, 21, and 28. In acute studies, the renal vasoconstrictor actions of angiotensin II (ANGII), noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) were determined. SHR control rats had a higher mean blood pressure than the WKY (132 ± 7 vs. 98 ± 2 mmHg), lower plasma and urinary adiponectin, creatinine clearance, urine flow rate and sodium excretion, and oxidative stress markers compared to WKY (all P drug treatments and to a greater extent by combined treatment. Responses to intrarenal administration of NA, PE, ME, and ANGII were larger in SHR (P 
    Matched MeSH terms: Kidney/drug effects*
  19. Moyson S, Liew HJ, Fazio A, Van Dooren N, Delcroix A, Faggio C, et al.
    PMID: 27521798 DOI: 10.1016/j.cbpc.2016.08.003
    In the present study, the effect of copper was examined in the common goldfish (Carassius auratus auratus). Fish were fasted and exposed to either a high (0.84μM), a low (0.34μM) or a control copper concentration (0.05μM) for 1 and 7days. Swimming performance was not affected by either fasting or copper exposure. Food deprivation alone had no effect on ionoregulation, but low plasma osmolality levels and plasma Na(+) were noticed in fasted fish exposed to Cu for 7days. Both gill Na(+)/K(+)-ATPase and H(+)-ATPase activities were undisturbed, while both kidney ATPase activities were up-regulated when challenged with the high Cu levels. Up-regulated kidney ATPase activities likely acted as compensatory strategy to enhance Na(+) reabsorption. However, this up-regulation was not sufficient to restore Na(+) to control levels in the highest exposure group.
    Matched MeSH terms: Kidney/drug effects*
  20. Tanvir EM, Afroz R, Chowdhury M, Gan SH, Karim N, Islam MN, et al.
    Hum Exp Toxicol, 2016 Sep;35(9):991-1004.
    PMID: 26519480 DOI: 10.1177/0960327115614384
    This study investigated the main target sites of chlorpyrifos (CPF), its effect on biochemical indices, and the pathological changes observed in rat liver and kidney function using gas chromatography/mass spectrometry. Adult female Wistar rats (n = 12) were randomly assigned into two groups (one control and one test group; n = 6 each). The test group received CPF via oral gavage for 21 days at 5 mg/kg daily. The distribution of CPF was determined in various organs (liver, brain, heart, lung, kidney, ovary, adipose tissue, and skeletal muscle), urine and stool samples using GCMS. Approximately 6.18% of CPF was distributed in the body tissues, and the highest CPF concentration (3.80%) was found in adipose tissue. CPF also accumulated in the liver (0.29%), brain (0.22%), kidney (0.10%), and ovary (0.03%). Approximately 83.60% of CPF was detected in the urine. CPF exposure resulted in a significant increase in plasma transaminases, alkaline phosphatase, and total bilirubin levels, a significant reduction in total protein levels and an altered lipid profile. Oxidative stress due to CPF administration was also evidenced by a significant increase in liver malondialdehyde levels. The detrimental effects of CPF on kidney function consisted of a significant increase in plasma urea and creatinine levels. Liver and kidney histology confirmed the observed biochemical changes. In conclusion, CPF bioaccumulates over time and exerts toxic effects on animals.
    Matched MeSH terms: Kidney/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links