Compounds 1-25 showed varying degree of antileishmanial activities with IC50 values ranging between 1.95 and 88.56 μM. Compounds 2, 10, and 11 (IC50=3.29±0.07 μM, 1.95±0.04 μM, and 2.49±0.03 μM, respectively) were found to be more active than standard pentamidine (IC50=5.09±0.04 μM). Compounds 7 (IC50=7.64±0.1 μM), 8 (IC50=13.17±0.46 μM), 18 (IC50=13.15±0.02 μM), and 24 (IC50=15.65±0.41 μM) exhibited good activities. Compounds 1, 3, 4, 5, 9, 12, 15, 18, and 19 were found to be moderately active. Compounds 13, 14, 16, 17, 20-25 showed weak activities with IC50 values ranging between 57 and 88 μM.
Glycosylation represents the most widespread posttranslational modifications, found in a broad spectrum of natural and therapeutic recombinant proteins. It highly affects bioactivity, site-specificity, stability, solubility, immunogenicity, and serum half-life of glycoproteins. Numerous expression hosts including yeasts, insect cells, transgenic plants, and mammalian cells have been explored for synthesizing therapeutic glycoproteins. However, glycosylation profile of eukaryotic expression systems differs from human. Glycosylation strategies have been proposed for humanizing the glycosylation pathways in expression hosts which is the main theme of this review. Besides, we also highlighted the glycosylation potential of protozoan parasites by emphasizing on the mammalian-like glycosylation potential of Leishmania tarentolae known as Leishmania expression system.
Molecular hybridization yielded phenyl linked oxadiazole-benzohydrazones hybrids 6-35 and were evaluated for their antileishmanial potentials. Compound 10, a 3,4-dihydroxy analog with IC50 value of 0.95 ± 0.01 μM, was found to be the most potent antileishmanial agent (7 times more active) than the standard drug pentamidine (IC50 = 7.02 ± 0.09 μM). The current series 6-35 conceded in the identification of thirteen (13) potent antileishmanial compounds with the IC50 values ranging between 0.95 ± 0.01-78.6 ± 1.78 μM. Molecular docking analysis against pteridine reductase (PTR1) were also performed to probe the mode of action. Selectivity index showed that compounds with higher number of hydroxyl groups have low selectivity index. Theoretical stereochemical assignment was also done for certain derivatives by using density functional calculations.
Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA-polymerases. To protect viral RNAs from degradation, capsid proteins of totivirus L-A cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. Capsid proteins of LRV1 contain a putative RNA binding site distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative de-capping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than thirty thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is predominantly caused by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus L-A protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for muco-cutaneous leishmaniasis.
4-Methylbenzimidazole 1-28 novel derivatives were synthesized and evaluated for their antiglycation and antioxidant activities. Compounds 1-7 and 11 showed excellent activities ranged 140-280 μM, better than standard drug rutin (294.46 ± 1.50 μM). Compound 1-28 were also evaluated for DPPH activities. Compounds 1-8 showed excellent activities, ranging 12-29 μM, better than standard drug n-propylgallate (IC50 = 30.30 ± 0.40 μM). For superoxide anion scavenging activity, compounds 1-7 showed better activity than standard n-propylgallate (IC50 = 106.34 ± 1.6 μM), ranged 82-104 μM. These compounds were found to be nontoxic to THP-1 cells.
The current study was aimed to evaluate the anti-leishmanial potentials of β-sitosterol isolated from Ifloga spicata. The anti-leishmanial potential of β-sitosterol is well documented against Leishmania donovani and Leishmania amazonensis but unexplored against Leishmania tropica. Structure of the compound was elucidated by FT-IR, mass spectrometry and multinuclear (1H and 13C) magnetic resonance spectroscopy. The compound was evaluated for its anti-leishmanial potentials against L. tropica KWH23 using in vitro anti-promastigote, DNA interaction, apoptosis, docking studies against leishmanolysin (GP63) and trypanothione reductase (TR) receptors using MOE 2016 software. β-sitosterol exhibited significant activity against leishmania promastigotes with IC50 values of 9.2 ± 0.06 μg/mL. The standard drug glucantaime showed IC50 of 5.33 ± 0.07 µg/mL. Further mechanistic studies including DNA targeting and apoptosis induction via acridine orange assay exhibited promising anti-leishmanial potentials for β-sitosterol. Molecular docking with leishmanolysin (GP63) and trypanothione reductase (TR) receptors displayed the binding scores of β-sitosterol with targets TR and GP63 were -7.659 and -6.966 respectively. The low binding energies -61.54 (for TR) and -33.24 (for GP63) indicate that it strongly bind to the active sites of target receptors. The results confirmed that β-sitosterol have considerable anti-leishmanial potentials and need further studies as potential natural anti-leishmanial agent against L. tropica.
The organisms of the genus Leishmania are flagellated protozoan parasites and are the causative agents of leishmaniasis. This disease is a major health problem, especially in tropical countries. Currently, cutaneous leishmaniasis is treated by chemotherapy using pentavalent antimonials, but these drugs have serious organo-toxicity, drug resistance on several occasions, and low efficiency in controlling the infection. The present work is carried out to evaluate the in vitro antileishmanial activity of methanolic extracts and phytochemical fractions of two plants ethnobotanically used against leishmaniasis and skin infection, Calotropis procera and Rhazya stricta leaves against Leishmania major promastigote and amastigote stages and cytotoxicity against the Vero cell line. The leaves of C. procera and R. stricta were extracted with methanol and fractionated by petroleum ether, chloroform, ethyl acetate, n-butanol, and water. The methanolic extracts of the leaves of C. procera and R. stricta exhibited antileishmanial activity against L. major promastigotes with IC50 values of 66.8 and 42.4 µg mL-1, respectively. While their CC50 2.3 and 298 µg mL-1 and their SI 0.03 and 7.03 respectively. However, the fractionations of the methanolic extract of C. procera leaves revealed antiparasitic activity against both L. major promastigote and amastigote stages in vitro, which significantly increased with polarity with the exception of n-butanol. Hence the best activity was revealed by the water fraction (IC50 of 26.3 and 29.0 µg mL-1) for the two stages. In conclusion, further phytochemical investigation should be performed for the C. procera water extract in terms of antileishmanial active ingredient isolation that may enhance the possibility of avoiding toxic substances and overcome the low SI (1.1 and 1.01).
Leishmaniasis and toxoplasmosis are parasitic protozoal diseases that pose serious health concerns, especially for immunocompromised people. Leishmania major and Toxoplasma gondii are endemic in Saudi Arabia and are particularly common in the Qassim Region. The present work was conducted to evaluate the in vitro antileishmanial and antitoxoplasmal activity of methanolic extracts and phytochemical fractions from two plants, Euphorpia retusa and Pulicaria undulata, which are ethnobotanical agents used to treat parasitic infection. Whole E. retusa and P. undulata plants were extracted with methanol and fractionated using petroleum ether, chloroform, ethyl acetate, n-butanol, and water and then were tested in vitro against L. major promastigote and the amastigote stages of T. gondii; the cytotoxicity of the extracts was tested against Vero cell line. The methanolic extracts of E. retusa and P. undulata exhibited promising antitoxoplasmal activity against T. gondii with EC50 values 5.6 and 12.7 μg mL-1, respectively. The chloroform fraction of P. undulata was the most potent, exhibiting an EC50 of 1.4 μg mL-1 and SI value of 12.1. It was also the most active fraction against both L. major promastigotes and amastigotes, exhibiting an EC50 of 3.9 and 3.8 μg mL-1 and SI values 4.4 and 4.5, respectively. The chloroform fraction from P. undulata is a very good candidate for the isolation of active antitoxoplasmal and antileishmanial ingredients; therefore, further phytochemical analysis for active compound isolation is highly recommended.
Phytochemical investigation of Beilschmiedia alloiophylla has resulted in the isolation of one new alkaloid, 2-hydroxy-9-methoxyaporphine (1), and ten known natural products, laurotetanine (2), liriodenine (3), boldine (4), secoboldine (5), isoboldine (6), asimilobine (7), oreobeiline (8), 6-epioreobeiline (9), β-amyrone (10), and (S)-3-methoxynordomesticine (11). Chemical studies on the bark of B. kunstleri afforded compounds 2 and 4 along with one bisbenzylisoquinoline alkaloid, N-dimethylphyllocryptine (12). Structures of compounds 1-12 were elucidated on the basis of spectroscopic methods. All of these isolates were evaluated for their anti-acetylcholinesterase (AChE), anti-α-glucosidase, anti-leishmanial and anti-fungal activities. Compounds 1-12 exhibited strong to moderate bioactivities in aforementioned bioassays.
Three new 5,1'-coupled naphthylisoquinoline alkaloids, ancistrobenomine A (1), 6-O-demethylancistrobenomine A (2), and 5'-O-demethylancistrocline (3), have been isolated from the stem bark of a botanically as yet undescribed highland liana Ancistrocladus sp., proposed to be named "A. benomensis" according to the region in Peninsular Malaysia where it has been discovered on the mountain of Gunung Benom. Two of the compounds possess an unprecedented structure with a novel hydroxymethylene group at C-3 of the fully dehydrogenated isoquinoline moiety. The structural elucidation was achieved by chemical, spectroscopic, and chiroptical methods. As typical of the so-called Ancistrocladaceae type, all of the compounds isolated bear an oxygen at C-6. Biological activities of these alkaloids against different protozoic pathogens are described.
The EtOH extract of the leaves of Holarrhena curtisii yielded five new steroidal alkaloids: 17-epi-holacurtine (3), 17-epi-N-demethylholacurtine (4), holacurtinol (5), 3alpha-amino-14beta-hydroxypregnan-20-one (7), and 15alpha-hydroxyholamine (8), in addition to the known compounds, holacurtine (1), N-demethylholacurtine (2), and holamine (6). All eight compounds showed significant cytotoxic and leishmanicidal activities.
Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50