METHOD: A total of 140 urine samples were collected from trapped rats. These samples were cultured in EMJH enriched media and 18 of these samples (12.9%) were found to be positive when observed under x40 by dark field microscope. Genomic DNA was extracted from all the 18 native isolates for PCR.
RESULT: All the 18 isolates generated the expected 786 base pair band when the set of primers known to amplify LipL32 gene were utilized. These results showed that the primers were suitable to be used for the identification of pathogenic leptospira from the 18 rat samples.
CONCLUSION: The sequencing of the PCR products and BLAST analysis performed on each representative isolates confirmed the pathogenic status of all these native isolates as the LipL32 gene was detected in all the Leptospira isolates. This indicates that the rats are carriers of the pathogenic leptospira in the study area, and therefore are of public health importance.
METHODS: Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism.
RESULTS: SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling.
CONCLUSION: High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.