Displaying publications 21 - 40 of 1297 in total

Abstract:
Sort:
  1. Arafat MM, Haseeb AS, Akbar SA
    Sensors (Basel), 2014;14(8):13613-27.
    PMID: 25072346 DOI: 10.3390/s140813613
    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods; Microscopy, Electron, Transmission/methods
  2. Lim J, Yeap SP, Che HX, Low SC
    Nanoscale Res Lett, 2013;8(1):381.
    PMID: 24011350 DOI: 10.1186/1556-276X-8-381
    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.
    Matched MeSH terms: Microscopy, Electron, Transmission
  3. Ahmad P, Khandaker MU, Amin YM, Muhammad N
    Sci Rep, 2016;6:21403.
    PMID: 26892366 DOI: 10.1038/srep21403
    Boron niride microflakes of 2-5 μm in diameter and greater than 40 μm in length with multilayer structure and highly crystalline nature are synthesized in two states of catalysts and dual role of nitrogen at 1100 °C. Most of the microflakes are flat, smooth and vertically aligned with a wall-like view from the top. Transmission electron microscopy shows overlapped layers of microflakes with an interlayer spacing of 0.34 nm. The h-BN components of the synthesized microflakes are verified from B 1s and N1 s peaks at 190. 7 and 397.9 eV. Raman shift at 1370 (cm(-1)) and sharp peaks in the XRD pattern further confirm the h-BN phase and crystalline nature of the synthesized microflakes. Microflakes of h-BN with the above characteristics are highly desirable for the development of a solid state neutron detector with higher detection efficiency.
    Matched MeSH terms: Microscopy, Electron, Transmission
  4. Sapuan SM, Aulia HS, Ilyas RA, Atiqah A, Dele-Afolabi TT, Nurazzi MN, et al.
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992450 DOI: 10.3390/polym12102211
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Aslantas K, Danish M, Hasçelik A, Mia M, Gupta M, Ginta T, et al.
    Materials (Basel), 2020 Jul 06;13(13).
    PMID: 32640567 DOI: 10.3390/ma13132998
    Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Nor Azwin Ahad, Noraziana Parimin, Norsuria Mahmed, Siti Sarah Ibrahim, Khairul Nizzam, Ying, Mon Ho
    MyJurnal
    Currently, research in composite materials is being directed at using natural fibers instead of synthetics fibers. The use of natural fibers, derived from annually renewable resources, as reinforcing fibers in matrix provides positives environmental benefits with respect to ultimate disposability and raw material utilization. Natural fiber offers an alternative to the technical reinforcing fibers because of their low density, good mechanical performance, ultimate availability and disposability. Modifying the fiber surface by using chemical treatment can enhance bond strength between fiber and matrix. Chemical treatment also an effective way to clean the fiber surface, chemically modify the surface and increase the surface roughness. Surface analyses on fiber for before and after treatment were investigated using scanning electron microscopy (SEM).
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Hamzah, E., Kanniah, M., Harun, M.
    MyJurnal
    The microstructure, tensile fracture and creep fracture of as-cast beta phase contained γ-TiAl with nominal composition of Ti-48Al-4Cr (at.%) was investigated. The effect of beta phase on tensile and creep strength was determined from fracture analysis. Tensile test were performed at room temperature whereas constant load tensile creep test were performed at temperature 800 0 C and initial stress of 150MPa. Initial as-cast microstructure, microstructure and fracture surface after tensile and creep test were examined using scanning electron microscopy technique. Analysis shows brittle fracture after room temperature tensile test whereas ductile fracture after high temperature creep test. The role of beta phase was discussed. It is concluded that beta phase is sensitive to temperature and detrimental at both room and high temperature.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Aziz Mohamed, A., Hafizal Yazid, Sahrim Ahmad, Rozaidi Rasid, Jaafar Abdullah, Dahlan, M., et al.
    MyJurnal
    L18 orthogonal array in mix level of Taguchi robust design method was carried out to optimize experimental conditions for the preparation of polymer blend composite. Tensile strength and neutron absorption of the composite were the properties of interest. Filler size, filler loading, ball mixing time and dispersion agent concentration were selected as parameters or factors which are expected to affect the composite properties. As a result of Taguchi analysis, filler loading was the most influencing parameter on the tensile strength and neutron absorption. The least influencing was ball-mixing time. The optimal conditions were determined by using mix-level Taguchi robust design method and a polymer composite with tensile strength of 6.33 MPa was successfully prepared. The composite was found to fully absorb thermal neutron flux of 1.04 x 105n/cm2/s with only 2 mm in thickness. In addition, the filler was also characterized by scanning electron microscopy (SEM) and elemental analysis (EDX).
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Zuraida, A., Maisarah, T., Zahurin, H., Muhammad Luqman, A., Roszaliya, A., Wan Shazlin Maisarah, W.M.Y., et al.
    MyJurnal
    The chemical composition and anatomical characteristics on lignin distribution of rattan waste were analyzed to determine its suitability to be used in binderless board fabrication. The chemical composition was analyzed by using TAPPI methods. Observation and determination of lignin distribution and board structure were executed by using optical microscopy (OM) and scanning electron microscope (SEM). High amount of hemicellulose, cellulose and lignin content found in rattan waste chemical composition is seen to help in binderless board fabrication. The micrographs revealed that the rattan has fine structural construction that helps in producing good qualities of binderless boards with particular manufacturing parameters.
    Matched MeSH terms: Microscopy, Electron, Scanning
  10. Normalawati, S., Suhaniza, R., Hing, H.L.
    MyJurnal
    Ultrastructural study was carried out 2 groups of pollen with numerous, arranged and spirals on convex. Five species was studied; Desmos chinensis Lour. Fl., Desmos cochinchinensis Lour Fl. , Desmos dumonsus (Roxb.) Safford. , Desmos dunalii (Hk. F. et Th.) Safford. and Desmos dasymaschalus (Bl.) Safford. Pollen was collected from UKM Herbarium specimens and fresh specimen was collected at difference area in the Malaysia. They were acetolysis and dried by CPD method. Parameter studied via scanning electron microscope are mounted pollen, were stamen material; shape, P/E, size, surface structure and calpus ornamentation. Results obtained showed that pollen was inaperturate with needle structure and solitary globus. The morphology of pollen grains of all the species is presented and an identification key base on scanning electron microscope observations is tested.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Mohd Khalizan Sabullah, Azlan Jualang Gansau, Mohd Yunus Shukor, Baskaran Gunasekaran, Nor Arifin Shamaan, Mohd Rosni Sulaiman
    MyJurnal
    Investigation on in vivo effects of copper (Cu) on the ultrastructure of P. javanicus liver was
    carried out using transmission electron microscopy (TEM). The addition of sublethal
    concentration of 5 mg/L of Cu caused abnormalities on the bile canaliculi (BC) including
    dilation and elongation compared to control and at lower concentrations of copper with a normal
    round shape form. Findings from this study support an alternative histological assessment of the
    effects of Cu concentration on P. javanicus liver.
    Matched MeSH terms: Microscopy, Electron, Transmission
  12. Anisa S. Al-Hakimi, Haja Maideen, Latiff A
    Sains Malaysiana, 2015;44:7-15.
    Pollens and seeds of Hypoestes and Rhinacanthus collected from different field localities in Taiz and Soqotra Island, Yemen were investigated by using light and scanning electron microscopes. Pollen grains of Hypoestes were prolate in equatorial view, lobate trigonal to lobate circular in polar view whereas those of Rhinacanthus were subspheroidal and rounded trigonal in polar view. The aperture was tricolporate and exine ornamentation was coarsely reticulate for all species in the two genera. Scanning electron microscopy and morphological observations showed that mature dry seeds of Hypoestes and Rhinacanthus have various sizes and shapes, the surface ornamentations observed were reticulate to cristate, an addition to the tuberculum and papillae. The three Hypoestes species differ in the seed structure which are useful for identification and their high structural diversity provides an important taxonomic value for species differentiation.
    Matched MeSH terms: Microscopy, Electron, Scanning
  13. Amir Sidek, Rashidah Arsat, He X, Kalantar-zadeh K, Wlodarski W
    Sains Malaysiana, 2013;42:213-217.
    Poly-vinyl-pyrrolidone (PVP)/polyaniline based surface acoustic wave (SAW) sensors were fabricated and characterized and their performances towards hydrogen gas were investigated. The PVP/polyaniline fibers composite were prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material was observed. From the dynamic response, frequency shifts of 6.243 kHz (1% H2) and 8.051 kHz (1% H2) were recorded for the sensors deposited with PVP/ES and PVP/EB, respectively.
    Matched MeSH terms: Microscopy, Electron, Scanning
  14. M.E.A. Samsudin, M. Ikram Md Taib, N. Zainal, R. Radzali, S. Yaakob, Z. Hassan
    Sains Malaysiana, 2013;42:1333-1337.
    A number of n-type Si (100) samples were prepared into porous structures via electrochemical etching process, using an electrolyte solution; HF and ethanol. The morphological properties of the samples were observed under scanning electron microscope measurement. The results showed that the pore density, pore uniformity distribution and pore size of the porous Si samples increased with time of etching. In the next stage, H2O2 was introduced into the electrolyte solution in order to investigate its effect on the morphological properties of the porous Si. From the experiment, we found that H2O2 gave finer porous structure with highly symmetrical cubic shape on the surface. Besides, H2O2 promoted smoother surface of the pore walls. Hence, the results showed that such porous Si structure could be used as a better substrate for the subsequent layer, in particular for the growth of cubic material.
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Houssein M.A. El-Taguri, Latiff A
    Sains Malaysiana, 2014;43:1283-1293.
    Pollen morphology of 24 species of Vatica L. had been investigated using light and scanning electron microscopes. Vatica is a stenopalynous genus, the pollens are radially symmetrical, isopolar, subprolate to suboblate sometimes prolate rarely oblate, all tricolpate. Exine ornamentation varies from thin to medium reticulate. On the basis of pollen shape two groups of Vatica have been recognized. Within the genus pollen diversity is valuable for identification and delimiting species.
    Matched MeSH terms: Microscopy, Electron, Scanning
  16. Noorma Wati Haron, Nordiyanah Anuar, Rubashiny Veeramohan
    Sains Malaysiana, 2015;44:643-650.
    A comparative leaf micromorphological study of Melastoma malabathricum, M. malabathricum var. alba and M.
    sanguineum (Melastomataceae) was carried out by scanning electron microscope. Characters such as epidermal cell
    shape, trichomes and stomatal type and distribution were observed. Non-glandular trichomes are present in all species
    examined. The stomata are all of paracytic type and dispersed randomly over the whole abaxial surface. The patterns of
    surface sculpturing and outer stomatal rim are unique in all the species examined. Leaf micromorphology has significant
    taxonomic value in the genus Melastoma and the present study has added some new taxonomic information for the genus
    Melastoma.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Lo TY, Sim KS, Tso CP, Nia ME
    Scanning, 2014 Sep-Oct;36(5):530-9.
    PMID: 25139061 DOI: 10.1002/sca.21152
    An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Sim KS, Nia ME, Tso CP
    Scanning, 2013 May-Jun;35(3):205-12.
    PMID: 22961698 DOI: 10.1002/sca.21055
    A number of techniques have been proposed during the last three decades for noise variance and signal-to-noise ratio (SNR) estimation in digital images. While some methods have shown reliability and accuracy in SNR and noise variance estimations, other methods are dependent on the nature of the images and perform well on a limited number of image types. In this article, we prove the accuracy and the efficiency of the image noise cross-correlation estimation model, vs. other existing estimators, when applied to different types of scanning electron microscope images.
    Matched MeSH terms: Microscopy, Electron, Scanning
  19. Sim KS, Nia ME, Tso CP
    Scanning, 2011 Mar-Apr;33(2):82-93.
    PMID: 21381045 DOI: 10.1002/sca.20223
    A new and robust parameter estimation technique, named image noise cross-correlation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with nearest neighborhood and first-order interpolation. Overall, the proposed method is best as its estimations for the noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree, compared with the others.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Sim KS, Kamel NS, Chuah HT
    Scanning, 2005 6 7;27(3):147-53.
    PMID: 15934507
    In this paper, we propose to use the autoregressive (AR)-based interpolator with Wiener filter and apply the idea to scanning electron microscope (SEM) images. The concept for combining the AR-based interpolator with Wiener filtering comes from the essential requirement of Wiener filtering for accurate and consistent estimation of the power of the noise in images prior to filter implementation. The resultant filter is called AR-Wiener filter. The proposed filter is embedded onto the frame grabber card of the scanning electron microscope (SEM) for real-time image processing. Different images are captured using SEM and used to compare the performances of the conventional Wiener and the proposed AR-Wiener technique.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links