Displaying publications 21 - 40 of 355 in total

Abstract:
Sort:
  1. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Abu Osman NA
    J Biomed Mater Res A, 2015 Jul;103(7):2482-98.
    PMID: 25407786 DOI: 10.1002/jbm.a.35371
    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials.
    Matched MeSH terms: Models, Molecular
  2. Chan YF, AbuBakar S
    Virol J, 2005;2:74.
    PMID: 16122396
    At least three different EV-71 subgenotypes were identified from an outbreak in Malaysia in 1998. The subgenotypes C2 and B4 were associated with the severe and fatal infections, whereas the B3 virus was associated with mild to subclinical infections. The B3 virus genome sequences had >= 85% similarity at the 3' end to CV-A16. This offers opportunities to examine if there are characteristic similarities and differences in virulence between CV-A16, EV-71 B3 and EV-71 B4 and to determine if the presence of the CV-A16-liked genes in EV-71 B3 would also confer the virus with a CV-A16-liked neurovirulence in mice model infection.
    Matched MeSH terms: Models, Molecular
  3. Camacho F, Moreno E, Garcia-Alles LF, Chinea Santiago G, Gilleron M, Vasquez A, et al.
    Front Immunol, 2020;11:566710.
    PMID: 33162982 DOI: 10.3389/fimmu.2020.566710
    Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.
    Matched MeSH terms: Models, Molecular*
  4. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Models, Molecular
  5. Hamzah R, Bakar MA, Khairuddean M, Mohammed IA, Adnan R
    Molecules, 2012 Sep 12;17(9):10974-93.
    PMID: 22971583 DOI: 10.3390/molecules170910974
    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
    Matched MeSH terms: Models, Molecular
  6. Lim SW, Tan KJ, Azuraidi OM, Sathiya M, Lim EC, Lai KS, et al.
    Sci Rep, 2021 12 17;11(1):24206.
    PMID: 34921182 DOI: 10.1038/s41598-021-03624-x
    MYB proteins are highly conserved DNA-binding domains (DBD) and mutations in MYB oncoproteins have been reported to cause aberrant and augmented cancer progression. Identification of MYB molecular biomarkers predictive of cancer progression can be used for improving cancer management. To address this, a biomarker discovery pipeline was employed in investigating deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in predicting damaging and potential alterations on the properties of proteins. The nsSNP of the MYB family; MYB, MYBL1, and MYBL2 was extracted from the NCBI database. Five in silico tools (PROVEAN, SIFT, PolyPhen-2, SNPs&GO and PhD-SNP) were utilized to investigate the outcomes of nsSNPs. A total of 45 nsSNPs were predicted as high-risk and damaging, and were subjected to PMut and I-Mutant 2.0 for protein stability analysis. This resulted in 32 nsSNPs with decreased stability with a DDG score lower than - 0.5, indicating damaging effect. G111S, N183S, G122S, and S178C located within the helix-turn-helix (HTH) domain were predicted to be conserved, further posttranslational modifications and 3-D protein analysis indicated these nsSNPs to shift DNA-binding specificity of the protein thus altering the protein function. Findings from this study would help in the field of pharmacogenomic and cancer therapy towards better intervention and management of cancer.
    Matched MeSH terms: Models, Molecular*
  7. Agarwal R, Agarwal P
    Expert Opin Ther Targets, 2014 May;18(5):527-39.
    PMID: 24579961 DOI: 10.1517/14728222.2014.888416
    The homeostatic role of adenosine in regulating intraocular pressure (IOP) is now widely recognized, and hence, the drugs targeting adenosine receptors have become the focus of investigation. In this review, we summarize the adenosine receptor signaling pathways, which could be potential therapeutic targets for the management of glaucoma.
    Matched MeSH terms: Models, Molecular
  8. Ahmad H, Ahmad S, Shah SAA, Latif A, Ali M, Khan FA, et al.
    Bioorg Med Chem, 2017 07 01;25(13):3368-3376.
    PMID: 28457693 DOI: 10.1016/j.bmc.2017.04.022
    Extensive chromatographic separations performed on the basic (pH=8-10) chloroform soluble fraction of Aconitum heterophyllum resulted in the isolation of three new diterpenoid alkaloids, 6β-Methoxy, 9β-dihydroxylheteratisine (1), 1α,11,13β-trihydroxylhetisine (2), 6,15β-dihydroxylhetisine (3), and the known compounds iso-atisine (4), heteratisine (5), hetisinone (6), 19-epi-isoatisine (7), and atidine (8). Structures of the isolated compounds were established by means of mass and NMR spectroscopy as well as single crystal X-ray crystallography. Compounds 1-8 were screened for their antioxidant and enzyme inhibition activities followed by in silico studies to find out the possible inhibitory mechanism of the tested compounds. This work is the first report demonstrating significant antioxidant and anticholinesterase potentials of diterpenoid alkaloids isolated from a natural source.
    Matched MeSH terms: Models, Molecular
  9. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
    Matched MeSH terms: Models, Molecular
  10. Fani S, Kamalidehghan B, Lo KM, Hashim NM, Chow KM, Ahmadipour F
    Drug Des Devel Ther, 2015;9:6191-201.
    PMID: 26648695 DOI: 10.2147/DDDT.S87064
    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.
    Matched MeSH terms: Models, Molecular
  11. Souadia Z, Bouhemadou A, Bin-Omran S, Khenata R, Al-Douri Y, Al Essa S
    J Mol Graph Model, 2019 07;90:77-86.
    PMID: 31031219 DOI: 10.1016/j.jmgm.2019.04.008
    Structural parameters, electronic structure and optical properties of the dialkali metal monotelluride M2Te (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure were investigated via ab initio calculations using the all electron linearized augmented plane wave approach based on density functional theory with and without including spin-orbit coupling (SOC). The exchange-correlation interactions were described within the PBEsol version of the generalized gradient approximation and Tran-Blaha modified Becke-Johnson potential (TB-mBJ). Optimized equilibrium lattice parameters are in excellent accordance with existing measured ones. Computed energy band dispersions show that the studied compounds are large band gap materials. Inclusion of SOC reduces the band gap value compared to the corresponding one calculated without including SOC. Determination of the energy band character and interatomic bonding nature are performed using the densities of states diagrams and charge density distribution map. Linear optical function spectra are predicted for a wide energy range and the origin of the dielectric function spectrum peaks are determined.
    Matched MeSH terms: Models, Molecular
  12. Mohamoud HS, Hussain MR, El-Harouni AA, Shaik NA, Qasmi ZU, Merican AF, et al.
    Comput Math Methods Med, 2014;2014:904052.
    PMID: 24723968 DOI: 10.1155/2014/904052
    GalNAc-T1, a key candidate of GalNac-transferases genes family that is involved in mucin-type O-linked glycosylation pathway, is expressed in most biological tissues and cell types. Despite the reported association of GalNAc-T1 gene mutations with human disease susceptibility, the comprehensive computational analysis of coding, noncoding and regulatory SNPs, and their functional impacts on protein level, still remains unknown. Therefore, sequence- and structure-based computational tools were employed to screen the entire listed coding SNPs of GalNAc-T1 gene in order to identify and characterize them. Our concordant in silico analysis by SIFT, PolyPhen-2, PANTHER-cSNP, and SNPeffect tools, identified the potential nsSNPs (S143P, G258V, and Y414D variants) from 18 nsSNPs of GalNAc-T1. Additionally, 2 regulatory SNPs (rs72964406 and #x26; rs34304568) were also identified in GalNAc-T1 by using FastSNP tool. Using multiple computational approaches, we have systematically classified the functional mutations in regulatory and coding regions that can modify expression and function of GalNAc-T1 enzyme. These genetic variants can further assist in better understanding the wide range of disease susceptibility associated with the mucin-based cell signalling and pathogenic binding, and may help to develop novel therapeutic elements for associated diseases.
    Matched MeSH terms: Models, Molecular
  13. Alharthi AM, Lee MH, Algamal ZY, Al-Fakih AM
    SAR QSAR Environ Res, 2020 Aug;31(8):571-583.
    PMID: 32628042 DOI: 10.1080/1062936X.2020.1782467
    One of the most challenging issues when facing a Quantitative structure-activity relationship (QSAR) classification model is to deal with the descriptor selection. Penalized methods have been adapted and have gained popularity as a key for simultaneously performing descriptor selection and QSAR classification model estimation. However, penalized methods have drawbacks such as having biases and inconsistencies that make they lack the oracle properties. This paper proposes an adaptive penalized logistic regression (APLR) to overcome these drawbacks. This is done by employing a ratio (BWR) of the descriptors between-groups sum of squares (BSS) to the within-groups sum of squares (WSS) for each descriptor as a weight inside the L1-norm. The proposed method was applied to one dataset that consists of a diverse series of antimicrobial agents with their respective bioactivities against Candida albicans. By experimental study, it has been shown that the proposed method (APLR) was more efficient in the selection of descriptors and classification accuracy than the other competitive methods that could be used in developing QSAR classification models. Another dataset was also successfully experienced. Therefore, it can be concluded that the APLR method had significant impact on QSAR analysis and studies.
    Matched MeSH terms: Models, Molecular
  14. Jamil F, Teh AH, Schadich E, Saito JA, Najimudin N, Alam M
    J. Biochem., 2014 Aug;156(2):97-106.
    PMID: 24733432 DOI: 10.1093/jb/mvu023
    A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.
    Matched MeSH terms: Models, Molecular
  15. Teh AH, Saito JA, Najimudin N, Alam M
    Sci Rep, 2015;5:11407.
    PMID: 26094577 DOI: 10.1038/srep11407
    Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A-E, hence the distal site, from one subunit and helices F-H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys-His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions.
    Matched MeSH terms: Models, Molecular
  16. Mok SC, Teh AH, Saito JA, Najimudin N, Alam M
    Enzyme Microb Technol, 2013 Jun 10;53(1):46-54.
    PMID: 23683704 DOI: 10.1016/j.enzmictec.2013.03.009
    A truncated form of an α-amylase, GTA, from thermophilic Geobacillus thermoleovorans CCB_US3_UF5 was biochemically and structurally characterized. The recombinant GTA, which lacked both the N- and C-terminal transmembrane regions, functioned optimally at 70°C and pH 6.0. While enzyme activity was not enhanced by the addition of CaCl2, GTA's thermostability was significantly improved in the presence of CaCl2. The structure, in complex with an acarbose-derived pseudo-hexasaccharide, consists of the typical three domains and binds one Ca(2+) ion. This Ca(2+) ion was strongly bound and not chelated by EDTA. A predicted second Ca(2+)-binding site, however, was disordered. With limited subsites, two novel substrate-binding residues, Y147 and Y182, may help increase substrate affinity. No distinct starch-binding domain is present, although two regions rich in aromatic residues have been observed. GTA, with a smaller domain B and several shorter loops compared to other α-amylases, has one of the most compact α-amylase folds that may contribute greatly to its tight Ca(2+) binding and thermostability.
    Matched MeSH terms: Models, Molecular
  17. Aljohani G, Said MA, Lentz D, Basar N, Albar A, Alraqa SY, et al.
    Molecules, 2019 Feb 07;24(3).
    PMID: 30736403 DOI: 10.3390/molecules24030590
    An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, ¹H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P2₁/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π⁻π stack interactions obtained by XRD packing analyses.
    Matched MeSH terms: Models, Molecular
  18. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Feb;30(2):131-143.
    PMID: 30734580 DOI: 10.1080/1062936X.2019.1568298
    An improved binary differential search (improved BDS) algorithm is proposed for QSAR classification of diverse series of antimicrobial compounds against Candida albicans inhibitors. The transfer functions is the most important component of the BDS algorithm, and converts continuous values of the donor into discrete values. In this paper, the eight types of transfer functions are investigated to verify their efficiency in improving BDS algorithm performance in QSAR classification. The performance was evaluated using three metrics: classification accuracy (CA), geometric mean of sensitivity and specificity (G-mean), and area under the curve. The Kruskal-Wallis test was also applied to show the statistical differences between the functions. Two functions, S1 and V4, show the best classification achievement, with a slightly better performance of V4 than S1. The V4 function takes the lowest iterations and selects the fewest descriptors. In addition, the V4 function yields the best CA and G-mean of 98.07% and 0.977%, respectively. The results prove that the V4 transfer function significantly improves the performance of the original BDS.
    Matched MeSH terms: Models, Molecular
  19. Almansour AI, Kumar RS, Arumugam N, Basiri A, Kia Y, Ali MA
    Biomed Res Int, 2015;2015:965987.
    PMID: 25710037 DOI: 10.1155/2015/965987
    A series of hexahydro-1,6-naphthyridines were synthesized in good yields by the reaction of 3,5-bis[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones with cyanoacetamide in the presence of sodium ethoxide under simple mixing at ambient temperature for 6-10 minutes and were assayed for their acetylcholinesterase (AChE) inhibitory activity using colorimetric Ellman's method. Compound 4e with methoxy substituent at ortho-position of the phenyl rings displayed the maximum inhibitory activity with IC50 value of 2.12 μM. Molecular modeling simulation of 4e was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) enzyme to disclose binding interaction and orientation of this molecule into the active site gorge of the receptor.
    Matched MeSH terms: Models, Molecular*
  20. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Awang KB, et al.
    Eur J Med Chem, 2013 Sep;67:221-9.
    PMID: 23871902 DOI: 10.1016/j.ejmech.2013.06.054
    Series of hitherto unreported piperidone grafted pyridopyrimidines synthesized through ionic liquid mediated multi-component reaction. These compounds were evaluated for their inhibitory activities against AChE and BChE enzymes. All the compounds displayed considerable potency against AChE with IC50 values ranging from 0.92 to 9.11 μM, therein compounds 6a, 6h and 6i displayed superior enzyme inhibitory activities compared to standard drug with IC50 values of 0.92, 1.29 and 2.07 μM. Remarkably, all the compounds displayed higher BChE inhibitory activity compared to galantamine with IC50 values of 1.89-8.13 μM. Molecular modeling, performed for the most active compounds using three dimensional crystal structures of TcAChE and hBChE, disclosed binding template of these inhibitors into the active site of their respective enzymes.
    Matched MeSH terms: Models, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links