Displaying publications 21 - 40 of 735 in total

Abstract:
Sort:
  1. Ariffin MRK, Gopal K, Krishnarajah I, Che Ilias IS, Adam MB, Arasan J, et al.
    Sci Rep, 2021 Oct 20;11(1):20739.
    PMID: 34671103 DOI: 10.1038/s41598-021-99541-0
    Since the first coronavirus disease 2019 (COVID-19) outbreak appeared in Wuhan, mainland China on December 31, 2019, the geographical spread of the epidemic was swift. Malaysia is one of the countries that were hit substantially by the outbreak, particularly in the second wave. This study aims to simulate the infectious trend and trajectory of COVID-19 to understand the severity of the disease and determine the approximate number of days required for the trend to decline. The number of confirmed positive infectious cases [as reported by Ministry of Health, Malaysia (MOH)] were used from January 25, 2020 to March 31, 2020. This study simulated the infectious count for the same duration to assess the predictive capability of the Susceptible-Infectious-Recovered (SIR) model. The same model was used to project the simulation trajectory of confirmed positive infectious cases for 80 days from the beginning of the outbreak and extended the trajectory for another 30 days to obtain an overall picture of the severity of the disease in Malaysia. The transmission rate, β also been utilized to predict the cumulative number of infectious individuals. Using the SIR model, the simulated infectious cases count obtained was not far from the actual count. The simulated trend was able to mimic the actual count and capture the actual spikes approximately. The infectious trajectory simulation for 80 days and the extended trajectory for 110 days depicts that the inclining trend has peaked and ended and will decline towards late April 2020. Furthermore, the predicted cumulative number of infectious individuals tallies with the preparations undertaken by the MOH. The simulation indicates the severity of COVID-19 disease in Malaysia, suggesting a peak of infectiousness in mid-March 2020 and a probable decline in late April 2020. Overall, the study findings indicate that outbreak control measures such as the Movement Control Order (MCO), social distancing and increased hygienic awareness is needed to control the transmission of the outbreak in Malaysia.
    Matched MeSH terms: Models, Theoretical
  2. Mutlag AA, Ghani MKA, Mohammed MA, Lakhan A, Mohd O, Abdulkareem KH, et al.
    Sensors (Basel), 2021 Oct 19;21(20).
    PMID: 34696135 DOI: 10.3390/s21206923
    In the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network. However, many research challenges exist in the fog-cloud enabled network for healthcare applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is proposed and implemented using an ECG dataset. We design a resource scheduling model among fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of the network from the edge to the cloud. The proposed model overcomes the limitations of providing interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks significantly. The simulation results show that our model, in comparison with the cloud, significantly reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy consumption by 81%, and the instance cost by 80%.
    Matched MeSH terms: Models, Theoretical
  3. Law KB, M Peariasamy K, Mohd Ibrahim H, Abdullah NH
    Sci Rep, 2021 10 18;11(1):20574.
    PMID: 34663839 DOI: 10.1038/s41598-021-00013-2
    The conventional susceptible-infectious-recovered (SIR) model tends to magnify the transmission dynamics of infectious diseases, and thus the estimated total infections and immunized population may be higher than the threshold required for infection control and eradication. The study developed a new SIR framework that allows the transmission rate of infectious diseases to decline along with the reduced risk of contact infection to overcome the limitations of the conventional SIR model. Two new SIR models were formulated to mimic the declining transmission rate of infectious diseases at different stages of transmission. Model A utilized the declining transmission rate along with the reduced risk of contact infection following infection, while Model B incorporated the declining transmission rate following recovery. Both new models and the conventional SIR model were then used to simulate an infectious disease with a basic reproduction number (r0) of 3.0 and a herd immunity threshold (HIT) of 0.667 with and without vaccination. Outcomes of simulations were assessed at the time when the total immunized population reached the level predicted by the HIT, and at the end of simulations. Further, all three models were used to simulate the transmission dynamics of seasonal influenza in the United States and disease burdens were projected and compared with estimates from the Centers for Disease Control and Prevention. For the simulated infectious disease, in the initial phase of the outbreak, all three models performed expectedly when the sizes of infectious and recovered populations were relatively small. As the infectious population increased, the conventional SIR model appeared to overestimate the infections even when the HIT was achieved in all scenarios with and without vaccination. For the same scenario, Model A appeared to attain the level predicted by the HIT and in comparison, Model B projected the infectious disease to be controlled at the level predicted by the HIT only at high vaccination rates. For infectious diseases with high r0, and at low vaccination rates, the level at which the infectious disease was controlled cannot be accurately predicted by the current theorem. Transmission dynamics of infectious diseases with herd immunity can be accurately modelled by allowing the transmission rate of infectious diseases to decline along with the reduction of contact infection risk after recovery or vaccination. Model B provides a credible framework for modelling infectious diseases with herd immunity in a randomly mixed population.
    Matched MeSH terms: Models, Theoretical
  4. Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP, Belton B, et al.
    Nat Commun, 2021 Sep 15;12(1):5413.
    PMID: 34526495 DOI: 10.1038/s41467-021-25516-4
    Numerous studies have focused on the need to expand production of 'blue foods', defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.
    Matched MeSH terms: Models, Theoretical
  5. Ayinla AY, Othman WAM, Rabiu M
    Acta Biotheor, 2021 Sep;69(3):225-255.
    PMID: 33877474 DOI: 10.1007/s10441-020-09406-8
    Tuberculosis has continued to retain its title as "the captain among these men of death". This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious I1, diagnosed infectious I2, treated T and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity [Formula: see text] is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0-20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community.
    Matched MeSH terms: Models, Theoretical
  6. Alam Khan N, Abdul Razzaq O, Riaz F, Ahmadian A, Senu N
    J Adv Res, 2021 09;32:109-118.
    PMID: 34484830 DOI: 10.1016/j.jare.2020.11.015
    Introduction: The fusion of fractional order differential equations and fuzzy numbers has been widely used in modelling different engineering and applied sciences problems. In addition to these, the Allee effect, which is of high importance in field of biology and ecology, has also shown great contribution among other fields of sciences to study the correlation between density and the mean fitness of the subject.

    Objectives: The present paper is intended to measure uncertain dynamics of an economy by restructuring the Cobb-Douglas paradigm of the renowned Solow-Swan model. The purpose of study is further boosted innovatively by subsuming the perception of logistic growth with Allee effect in the dynamics of physical capital and labor force.

    Methods: Fractional order derivative and neutrosophic fuzzy (NF) theory are applied on the parameters of the Cobb-Douglas equation. Distinctively, cogitating fractional order derivative to study the change at each fractional stage; single-valued triangular neutrosophic fuzzy numbers (SVTNFN) to cope the uncertain situations; logistic growth function with Allee effect to analyze the factors in natural way, are the significant and novel features of this endeavor.

    Results: The incorporation of the aforementioned theories and effects in the Cobb-Douglas equation, resulted in producing maximum sustainable capital investment and maximum capacity of labor force. The solutions in intervals located different possible solutions for different membership degrees, which accumulated the uncertain circumstances of a country.

    Conclusion: Explicitly, these notions add new facts and figures not only in the dynamical study of capital and labor, which has been overlooked in classical models, but also left the door open for discussion and implementation on classical models of different fields.

    Matched MeSH terms: Models, Theoretical
  7. Tseng ML, Negash YT, Nagypál NC, Iranmanesh M, Tan RR
    J Environ Manage, 2021 Aug 15;292:112735.
    PMID: 33992872 DOI: 10.1016/j.jenvman.2021.112735
    Eco-industrial parks promise to reduce environmental and social impacts and improve the economic performance of industrial parks. However, the transition from industrial parks to eco-industrial parks is still not well understood. This study contributes to developing valid hierarchical eco-industrial park transition attribute sets with qualitative information, as prior studies lack an exploration of the attributes in the transition of eco-industrial parks in Hungary. In nature, eco-industrial park transition attributes have causal and hierarchical interrelationships and are described with qualitative information. The assessment involves an analysis of the industrial symbiosis principles by using linguistic preferences. However, multiple attributes are involved in the assessment; therefore, this study proposes the Delphi method to develop a valid attribute set and applies fuzzy set theory to translate qualitative information into crisp values. The fuzzy decision-making trial evaluation laboratory method is used to visualize the attributes' causal interrelationships under uncertainties. The results indicate that the policy and regulatory framework leads to collaboration among firms in the eco-industrial park transition model. In practice, price reforms, management commitment, strategic planning, cognitive barriers and the integration of external information are the practical criteria for improvement. Theoretical and practical implications are also discussed.
    Matched MeSH terms: Models, Theoretical
  8. Chong NS, Smith SR, Werkman M, Anderson RM
    PLoS Negl Trop Dis, 2021 08;15(8):e0009625.
    PMID: 34339450 DOI: 10.1371/journal.pntd.0009625
    The World Health Organization has recommended the application of mass drug administration (MDA) in treating high prevalence neglected tropical diseases such as soil-transmitted helminths (STHs), schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. MDA-which is safe, effective and inexpensive-has been widely applied to eliminate or interrupt the transmission of STHs in particular and has been offered to people in endemic regions without requiring individual diagnosis. We propose two mathematical models to investigate the impact of MDA on the mean number of worms in both treated and untreated human subpopulations. By varying the efficay of drugs, initial conditions of the models, coverage and frequency of MDA (both annual and biannual), we examine the dynamic behaviour of both models and the possibility of interruption of transmission. Both models predict that the interruption of transmission is possible if the drug efficacy is sufficiently high, but STH infection remains endemic if the drug efficacy is sufficiently low. In between these two critical values, the two models produce different predictions. By applying an additional round of biannual and annual MDA, we find that interruption of transmission is likely to happen in both cases with lower drug efficacy. In order to interrupt the transmission of STH or eliminate the infection efficiently and effectively, it is crucial to identify the appropriate efficacy of drug, coverage, frequency, timing and number of rounds of MDA.
    Matched MeSH terms: Models, Theoretical
  9. Kondo T, Sakai N, Yazawa T, Shimizu Y
    Sci Total Environ, 2021 Jun 20;774:145075.
    PMID: 33609845 DOI: 10.1016/j.scitotenv.2021.145075
    The Soil and Water Assessment Tool (SWAT) ecohydrological model was utilized to simulate fecal contamination in the 1937 km2 Selangor River Watershed in Malaysia. The watershed conditions posed considerable challenges owing to data scarcity and tropical climate conditions, which are very different from the original conditions that SWAT was developed and tested for. Insufficient data were compensated by publicly available data (e.g., land cover, soil, and weather) to run SWAT. In addition, field monitoring and interviews clarified representative situations of pollution sources and loads, which were used as input for the model. Model parameters determined by empirical analyses in the USA (e.g., surface runoff, evapotranspiration, and temperature adjustment for bacteria die-off) are thoroughly discussed. In particular, due consideration was given to tropical climate characteristics such as intense rainfall, high potential evapotranspiration, and high temperatures throughout the year. As a result, the developed SWAT successfully simulated fecal contamination ranging several orders of magnitude along with its spatial distribution (i.e., Nash-Sutcliffe Efficiency (NSE) = 0.64, Root Mean Square Error-Observations Standard Deviation Ratio (RSR) = 0.64 at six mainstem sites, and NSE = 0.67 and RSR = 0.57 at 12 major tributaries). Moreover, mitigation countermeasures for future worsening of fecal contamination (i.e., E.coli concentration > 20,000 CFU/100 mL for 690 days during nine years at a raw water intake point for Kuala Lumpur [KL] residents) were analyzed through scenario simulations, thereby contributing to discussing effective watershed management. The results propose improving decentralized sewage treatment systems and treating chicken manure with effective microorganisms in order to guarantee water safety for KL residents (i.e., E.coli concentrations <20,000 CFU/100 mL throughout the period, considering Malaysian standards). Accordingly, this study verified the applicability of SWAT to simulate fecal contamination in areas that are difficult to model and suggests solutions for watershed management based on quantitative evidence.
    Matched MeSH terms: Models, Theoretical
  10. Mohammed NJ, Othman NK, Taib MFM, Samat MH, Yahya S
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207914 DOI: 10.3390/molecules26123535
    Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of -33.45 to -38.41 kJ·mol-1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.
    Matched MeSH terms: Models, Theoretical
  11. Mohd Basri MS, Liew Min Ren B, A Talib R, Zakaria R, Kamarudin SH
    Polymers (Basel), 2021 May 14;13(10).
    PMID: 34069259 DOI: 10.3390/polym13101581
    Dry mangosteen leaves are one of the raw materials used to produce marker ink. However, research using this free and abundant resource is rather limited. The less efficient one-factor-at-a-time (OFAT) approach was mostly used in past studies on plant-based marker ink. The use of statistical analysis and the regression coefficient model (mathematical model) was considered essential in predicting the best combination of factors in formulating mangosteen leaf-based marker ink. Ideally, ink should have maximum color lightness, minimum viscosity, and fast-drying speed. The objective of this study to study the effect of glycerol and carboxymethyl cellulose (CMC) on the color lightness and viscosity of mangosteen-leaves-based marker ink. The viscosity, color lightness, and drying properties of the ink were tested, the significant effect of glycerol and CMC (responses) on ink properties was identified and the prediction model on the optimum value of the responses was developed by using response surface methodology (RSM). The microstructure of mangosteen leaves was analyzed to study the surface morphology and cell structure during dye extraction. A low amount of glycerol used was found to increase the value of color lightness. A decrease in CMC amounts resulted in low viscosity of marker ink. The optimum formulation for the ink can be achieved when the weight percents of glycerol, benzalkonium chloride, ferrous sulphate, and CMC are set at 5, 5, 1, and 3, respectively. SEM micrographs showed the greatest amount of cell wall structure collapse on samples boiled with the lowest amount of glycerol.
    Matched MeSH terms: Models, Theoretical
  12. Eghbali Babadi F, Yunus R, Masoudi Soltani S, Shotipruk A
    ACS Omega, 2021 May 04;6(17):11144-11154.
    PMID: 34056270 DOI: 10.1021/acsomega.0c04353
    In this study, a mineral-based coated urea was fabricated in a rotary pan coater using a mixture of gypsum/sulfur/zeolite (G25S25Z50) as an effective and low-cost coating material. The effects of different coating compositions on the dissolution rate of urea and the crushing strength and morphology of the coated urea were investigated. A 25:25:50 (wt %) mixture of gypsum/sulfur/zeolite (G25S25Z50) increased the coating effectiveness to 34.1% with the highest crushing strength (31.06 N). The effectiveness of coated urea was further improved to 46.6% with the addition of a microcrystalline wax (3%) as a sealant. Furthermore, the release mechanisms of various urea fertilizers were determined by fitting the release profiles with six mathematical models, namely, the zeroth-order, first-order, second-order, Higuchi, Ritger & Peppas, and Kopcha models. The results showed that the release mechanism of the uncoated urea and all other coated urea followed the Ritger & Peppas model, suggesting the diffusional release from nonswellable delivery systems. In addition, due to the increased mass-transfer resistance, the kinetic constant was decreased from 0.2233 for uncoated urea to 0.1338 for G25S25Z50-coated urea and was further decreased to 0.0985 when 3% Witcovar 146 sealant was applied.
    Matched MeSH terms: Models, Theoretical
  13. Lim JT, Maung K, Tan ST, Ong SE, Lim JM, Koo JR, et al.
    PLoS Comput Biol, 2021 May;17(5):e1008959.
    PMID: 34043622 DOI: 10.1371/journal.pcbi.1008959
    Mass gathering events have been identified as high-risk environments for community transmission of coronavirus disease 2019 (COVID-19). Empirical estimates of their direct and spill-over effects however remain challenging to identify. In this study, we propose the use of a novel synthetic control framework to obtain causal estimates for direct and spill-over impacts of these events. The Sabah state elections in Malaysia were used as an example for our proposed methodology and we investigate the event's spatial and temporal impacts on COVID-19 transmission. Results indicate an estimated (i) 70.0% of COVID-19 case counts within Sabah post-state election were attributable to the election's direct effect; (ii) 64.4% of COVID-19 cases in the rest of Malaysia post-state election were attributable to the election's spill-over effects. Sensitivity analysis was further conducted by examining epidemiological pre-trends, surveillance efforts, varying synthetic control matching characteristics and spill-over specifications. We demonstrate that our estimates are not due to pre-existing epidemiological trends, surveillance efforts, and/or preventive policies. These estimates highlight the potential of mass gatherings in one region to spill-over into an outbreak of national scale. Relaxations of mass gathering restrictions must therefore be carefully considered, even in the context of low community transmission and enforcement of safe distancing guidelines.
    Matched MeSH terms: Models, Theoretical*
  14. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
    Matched MeSH terms: Models, Theoretical
  15. Tan SJ, Lee CK, Gan CY, Olalere OA
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916148 DOI: 10.3390/molecules26072014
    In this study, the combination of parameters required for optimal extraction of anti-oxidative components from the Chinese lotus (CLR) and Malaysian lotus (MLR) roots were carefully investigated. Box-Behnken design was employed to optimize the pH (X1: 2-3), extraction time (X2: 0.5-1.5 h) and solvent-to-sample ratio (X3: 20-40 mL/g) to obtain a high flavonoid yield with high % DPPHsc free radical scavenging and Ferric-reducing power assay (FRAP). The analysis of variance clearly showed the significant contribution of quadratic model for all responses. The optimal conditions for both Chinese lotus (CLR) and Malaysian lotus (MLR) roots were obtained as: CLR: X1 = 2.5; X2 = 0.5 h; X3 = 40 mL/g; MLR: X1 = 2.4; X2 = 0.5 h; X3 = 40 mL/g. These optimum conditions gave (a) Total flavonoid content (TFC) of 0.599 mg PCE/g sample and 0.549 mg PCE/g sample, respectively; (b) % DPPHsc of 48.36% and 29.11%, respectively; (c) FRAP value of 2.07 mM FeSO4 and 1.89 mM FeSO4, respectively. A close agreement between predicted and experimental values was found. The result obtained succinctly revealed that the Chinese lotus exhibited higher antioxidant and total flavonoid content when compared with the Malaysia lotus root at optimum extraction condition.
    Matched MeSH terms: Models, Theoretical
  16. Alahnomi RA, Zakaria Z, Yussof ZM, Althuwayb AA, Alhegazi A, Alsariera H, et al.
    Sensors (Basel), 2021 Mar 24;21(7).
    PMID: 33804904 DOI: 10.3390/s21072267
    Recent developments in the field of microwave planar sensors have led to a renewed interest in industrial, chemical, biological and medical applications that are capable of performing real-time and non-invasive measurement of material properties. Among the plausible advantages of microwave planar sensors is that they have a compact size, a low cost and the ease of fabrication and integration compared to prevailing sensors. However, some of their main drawbacks can be considered that restrict their usage and limit the range of applications such as their sensitivity and selectivity. The development of high-sensitivity microwave planar sensors is required for highly accurate complex permittivity measurements to monitor the small variations among different material samples. Therefore, the purpose of this paper is to review recent research on the development of microwave planar sensors and further challenges of their sensitivity and selectivity. Furthermore, the techniques of the complex permittivity extraction (real and imaginary parts) are discussed based on the different approaches of mathematical models. The outcomes of this review may facilitate improvements of and an alternative solution for the enhancement of microwave planar sensors' normalized sensitivity for material characterization, especially in biochemical and beverage industry applications.
    Matched MeSH terms: Models, Theoretical
  17. Ghalambaz M, Mehryan SAM, Hajjar A, Shdaifat MYA, Younis O, Talebizadehsardari P, et al.
    Molecules, 2021 Mar 09;26(5).
    PMID: 33803488 DOI: 10.3390/molecules26051496
    A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO-coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.
    Matched MeSH terms: Models, Theoretical
  18. Zentou H, Zainal Abidin Z, Yunus R, Awang Biak DR, Abdullah Issa M, Yahaya Pudza M
    ACS Omega, 2021 Feb 16;6(6):4137-4146.
    PMID: 33644536 DOI: 10.1021/acsomega.0c04025
    Despite the advantages of continuous fermentation whereby ethanol is selectively removed from the fermenting broth to reduce the end-product inhibition, this process can concentrate minor secondary products to the point where they become toxic to the yeast. This study aims to develop a new mathematical model do describe the inhibitory effect of byproducts on alcoholic fermentation including glycerol, lactic acid, acetic acid, and succinic acid, which were reported as major byproducts during batch alcoholic fermentation. The accumulation of these byproducts during the different stages of batch fermentation has been quantified. The yields of total byproducts, glycerol, acetic acid, and succinic acid per gram of glucose were 0.0442, 0.023, 0.0155, and 0.0054, respectively. It was found that the concentration of these byproducts linearly increases with the increase in glucose concentration in the range of 25-250 g/L. The results have also showed that byproduct concentration has a significant inhibitory effect on specific growth coefficient (μ) whereas no effect was observed on the half-velocity constant (Ks). A new mathematical model of alcoholic fermentation was developed considering the byproduct inhibitory effect, which showed a good performance and more accuracy compared to the classical Monod model.
    Matched MeSH terms: Models, Theoretical
  19. Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF
    ACS Chem Neurosci, 2021 Feb 03;12(3):391-418.
    PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824
    Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
    Matched MeSH terms: Models, Theoretical
  20. Singh GG, Harden-Davies H, Allison EH, Cisneros-Montemayor AM, Swartz W, Crosman KM, et al.
    Proc Natl Acad Sci U S A, 2021 02 02;118(5).
    PMID: 33504570 DOI: 10.1073/pnas.2100205118
    Matched MeSH terms: Models, Theoretical
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links