Displaying publications 21 - 40 of 203 in total

Abstract:
Sort:
  1. Tan JL, Simbun A, Chan KG, Ngeow YF
    Sci Data, 2020 05 05;7(1):135.
    PMID: 32371951 DOI: 10.1038/s41597-020-0475-x
    Mycobacterium tuberculosis (MTB) is commonly used as a model to study pathogenicity and multiple drug resistance in bacteria. These MTB characteristics are highly dependent on the evolution and phylogeography of the bacterium. In this paper, we describe 15 new genomes of multidrug-resistant MTB (MDRTB) from Malaysia. The assessments and annotations on the genome assemblies suggest that strain differences are due to lineages and horizontal gene transfer during the course of evolution. The genomes show mutations listed in current drug resistance databases and global MTB collections. This genome data will augment existing information available for comparative genomic studies to understand MTB drug resistance mechanisms and evolution.
    Matched MeSH terms: Mycobacterium tuberculosis/genetics*
  2. Sheffee NS, Rubio-Reyes P, Mirabal M, Calero R, Carrillo-Calvet H, Chen S, et al.
    Nanomedicine, 2021 06;34:102374.
    PMID: 33675981 DOI: 10.1016/j.nano.2021.102374
    Despite recent advances in diagnosis, tuberculosis (TB) remains one of the ten leading causes of death worldwide. Here, we engineered Mycobacterium tuberculosis (Mtb) proteins (ESAT6, CFP10, and MTB7.7) to self-assemble into core-shell nanobeads for enhanced TB diagnosis. Respective purified Mtb antigen-coated polyester beads were characterized and their functionality in TB diagnosis was tested in whole blood cytokine release assays. Sensitivity and specificity were studied in 11 pulmonary TB patients (PTB) and 26 healthy individuals composed of 14 Tuberculin Skin Test negative (TSTn) and 12 TST positive (TSTp). The production of 6 cytokines was determined (IFNγ, IP10, IL2, TNFα, CCL3, and CCL11). To differentiate PTB from healthy individuals (TSTp + TSTn), the best individual cytokines were IL2 and CCL11 (>80% sensitivity and specificity) and the best combination was IP10 + IL2 (>90% sensitivity and specificity). We describe an innovative approach using full-length antigens attached to biopolyester nanobeads enabling sensitive and specific detection of human TB.
    Matched MeSH terms: Mycobacterium tuberculosis/immunology*
  3. Hithaish Kumar RN, Rao CR, Maradi R, Umakanth S, Chidananda Sanju SV, Sreenivasa Rao BP
    Int J Mycobacteriol, 2023;12(2):117-121.
    PMID: 37338470 DOI: 10.4103/ijmy.ijmy_24_23
    BACKGROUND: Tuberculosis (TB) is a leading cause of mortality worldwide. The higher prevalence of anemia among TB patients is concerning due to its association with delayed sputum conversion and poor treatment outcomes. The present study aimed to evaluate the association of anemia with sputum smear conversion and treatment outcomes among TB patients.

    METHODS: In a prospective community-based cohort study, TB patients were recruited from 63 primary health centers in the district. Blood samples were collected at baseline, at 2 months, and at the end of 6 months. Data were analyzed using SPSS software version 15.

    RESULTS: Out of 661 patients recruited, anemia was observed among 503 (76.1%) participants. Prevalence of anemia was more among males 387 (76.9%) than 116 (23.1%) females. Out of 503 anemic patients, 334 (66.4%) had mild, 166 (33.0%) had moderate, and 3 (0.6%) had severe anemia at baseline. At 6-month treatment completion, 16 (6.3%) were still anemic. Among 503 anemic patients, 445 (88.4%) were given iron supplements and remaining 58 (11.6%) were managed with diet modifications. After completion of TB treatment, 495 (98.4%) patients had favorable treatment outcomes, whereas 8 (1.6%) patients had died. Severe anemia was not associated with poor outcomes.

    CONCLUSIONS: The presence of anemia among newly diagnosed TB patients, especially pulmonary TB was high. Increased risk of anemia was noted among males who were alcohol and tobacco consumers. There was no significant association between the presence of anemia and sputum conversion from baseline to 6 months of treatment completion.

    Matched MeSH terms: Mycobacterium tuberculosis*
  4. Khan AH, Nagoba BS, Shiromwar SS
    Int J Mycobacteriol, 2023;12(4):372-379.
    PMID: 38149530 DOI: 10.4103/ijmy.ijmy_143_23
    Globally, extensive drug-resistant tuberculosis (XDR-TB) is a major element to cause morbidity and death among tuberculosis patients. The present study identifies the vital risk variables contributing to XDR-TB prevalence in India. Scopus, PubMed/Medline, Science Direct, and Google Scholar databases were searched thoroughly for the articles, using medical subject heading as a key term published between the years 2012 and 2022. According to the inclusion criteria, 11 publications were selected. Socioeconomic characteristics include employment, educational attainment, undernourishment, and the rest, and demographic factors such as gender, age, and more. Were examined in the review, whereas alcoholics, smoking, and diabetes mellitus were investigated under comorbidities and behavioral risk factors. We observed that noncompliance, poor knowledge, and insufficient health-care facilities could significantly accelerate the spread of XDR-TB, and the present review imparts a remarkable and detailed evaluation of XDR-TB. The study analysis is markedly useful for policymakers as well as researchers to discover and implement effective solutions for tuberculosis-infected patients.
    Matched MeSH terms: Mycobacterium tuberculosis*
  5. Suhairi MH, Mohamad M, Isa MR, Mohd Yusoff MAS, Ismail N
    BMJ Open, 2024 Feb 26;14(2):e080144.
    PMID: 38413152 DOI: 10.1136/bmjopen-2023-080144
    OBJECTIVES: Due to the paucity of literature on risk factors for tuberculosis (TB)-related death, we determine the sociodemographic and clinical risk factors associated with TB-related deaths among adult pulmonary TB (PTB) patients on treatment in Selangor, Malaysia.

    DESIGN: Retrospective cohort study.

    SETTING: Routinely collected primary care data from all government TB clinics in Selangor.

    PARTICIPANTS: Data of 24 570 eligible adult PTB patients from 2013 to 2019 were obtained from Selangor's State Health Department surveillance records. We included PTB patients aged at least 15 years old at the time of diagnosis with complete documentation of the dates of diagnosis, treatment initiation, end of treatment/follow-up and treatment outcomes. We excluded patients whose diagnoses were changed to non-TB, post-mortem TB diagnosis and multidrug-resistant TB (MDR-TB) patients.

    PRIMARY AND SECONDARY OUTCOME MEASURES: TB-related death, determined from the recorded physicians' consensus during the TB mortality meeting.

    RESULTS: TB-related death was significantly associated with far (adjusted HR (aHR) 9.98, 95% CI 4.28 to 23.28) and moderately advanced (aHR 3.23, 95% CI 1.43 to 7.31) radiological findings at diagnosis; concurrent TB meningitis (aHR 7.67, 95% CI 4.53 to 12.98) and miliary TB (aHR 6.32, 95% CI 4.10 to 9.74) involvement; HIV positive at diagnosis (aHR 2.81, 95% CI 2.21 to 3.57); Hulu Selangor (aHR 1.95, 95% CI 1.29 to 2.93), Klang (aHR 1.53, 95% CI 1.18 to 1.98) and Hulu Langat (aHR 1.31, 95% CI 1.03 to 1.68) residing districts; no formal education (aHR 1.70, 95% CI 1.23 to 2.35); unemployment (aHR 1.54, 95% CI 1.29 to 1.84), positive sputum smear acid-fast bacilli (AFB) at diagnosis (aHR 1.51, 95% CI 1.22 to 1.85); rural residency (aHR 1.39, 95% CI 1.13 to 1.72) and advancing age (aHR 1.03, 95% CI 1.02 to 1.03).

    CONCLUSIONS: Far and moderately advanced radiological findings, concurrent TB meningitis and miliary TB involvement, HIV positive, Hulu Selangor, Klang and Hulu Langat residing districts, no formal education, unemployment, positive sputum smear AFB, rural residency and advancing age are risk factors of TB-related death. Our findings should assist in identifying high-risk patients requiring interventions against TB-related death.

    Matched MeSH terms: Mycobacterium tuberculosis*
  6. Dale JW, Nor RM, Ramayah S, Tang TH, Zainuddin ZF
    J Clin Microbiol, 1999 May;37(5):1265-8.
    PMID: 10203468
    Molecular typing with IS6110 was applied to Mycobacterium tuberculosis isolates from all parts of Malaysia. The degree of clustering increased with patient age, suggesting that reactivation may contribute to clustering. Identical banding patterns were also obtained for isolates from widely separate regions. Therefore, the use of clustering as a measure of recent transmission must be treated with caution. Strains related to the Beijing family were common in Peninsular Malaysia but were less common in Sabah and Sarawak, while a distinct group of strains comprised nearly 40% of isolates from East Malaysia but such strains were rare in Peninsular Malaysia. Single-copy strains, common in South and Southeastern Asia, constituted nearly 20% of isolates from the peninsula but were virtually absent in East Malaysia. The marked geographical difference in the prevailing strains indicates not only a restricted dissemination of M. tuberculosis but also a considerable degree of stability in the banding patterns.
    Matched MeSH terms: Mycobacterium tuberculosis/genetics*
  7. Tang TH, Ahmed SA, Musa M, Zainuddin ZF
    World J Microbiol Biotechnol, 2013 Dec;29(12):2389-95.
    PMID: 23807412 DOI: 10.1007/s11274-013-1407-0
    Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.
    Matched MeSH terms: Mycobacterium tuberculosis/classification; Mycobacterium tuberculosis/genetics; Mycobacterium tuberculosis/isolation & purification*
  8. Ismail A, Teh LK, Ngeow YF, Norazmi MN, Zainul ZF, Tang TH, et al.
    Genome Announc, 2013;1(3).
    PMID: 23788553 DOI: 10.1128/genomeA.00397-13
    We report the annotated genome sequence of a clinical isolate, Mycobacterium tuberculosis strain PR05, which was isolated from the human cerebrospinal fluid of a patient diagnosed with tuberculosis.
    Matched MeSH terms: Mycobacterium tuberculosis
  9. Issa R, Mohd Hassan NA, Abdul H, Hashim SH, Seradja VH, Abdul Sani A
    Diagn Microbiol Infect Dis, 2012 Jan;72(1):62-7.
    PMID: 22078904 DOI: 10.1016/j.diagmicrobio.2011.09.021
    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT.
    Matched MeSH terms: Mycobacterium tuberculosis/classification*; Mycobacterium tuberculosis/genetics; Mycobacterium tuberculosis/isolation & purification*
  10. Ganeswrie R, Chui CS, Balan S, Puthucheary SD
    Malays J Pathol, 2004 Dec;26(2):99-103.
    PMID: 16329561
    This study was carried out to compare the performance of BACTEC MGIT 960 with the BACTEC 460 TB for growth and detection of Mycobacteria from human clinical specimens. The BACTEC MGIT 960 instrument is a fully automated system that utilizes MGIT tubes containing an oxygen sensor embedded in silicon at the bottom and filled with 7 mL of modified Middlebrook 7H9 broth. Identical samples were inoculated into the two automated systems and incubated for six weeks. Over a period of three months, 279 specimens were decontaminated and processed according to the standard CDC NALC/NaOH method, using the commercial MycoPrep kit. Forty-two specimens (15%) yielded Mycobacterium tuberculosis; 37 (88%) were detected by the fluorescent BACTEC MGIT 960 and 35 (83%) detected by the radiometric BACTEC 460 TB. Fifteen specimens (5%) yielded Mycobacterium Other Than Tuberculosis (MOTT); 10 (66%) were detected by BACTEC MGIT 960 and 11 (73%) detected by BACTEC 460 TB. The average time to detection and contamination rates and the average time to obtain results of antimicrobial susceptibility tests between the two systems were compared. The performance of the BACTEC MGIT 960 was comparable to the BACTEC 460 TB system which has been the "Gold Standard" for automated detection of TB. The former was more rapid, as sensitive and less labour intensive than the BACTEC 460. Our data demonstrates that the BACTEC MGIT 960 system is an accurate, automated and a non-radioactive alternative to the BACTEC 460 TB for the culture and susceptibility testing of M. tuberculosis.
    Matched MeSH terms: Mycobacterium tuberculosis/classification; Mycobacterium tuberculosis/growth & development; Mycobacterium tuberculosis/isolation & purification*
  11. Issa R, Seradja VH, Abdullah MK, Abdul H
    Genome Announc, 2016;4(3).
    PMID: 27340055 DOI: 10.1128/genomeA.00517-16
    This is a report of the annotated genome sequence of Mycobacterium tuberculosis MTBR3/09. The organism was isolated from a sputum sample in Malaysia.
    Matched MeSH terms: Mycobacterium tuberculosis
  12. Kuan CS, Chan CL, Yew SM, Toh YF, Khoo JS, Chong J, et al.
    PLoS One, 2015;10(6):e0131694.
    PMID: 26110649 DOI: 10.1371/journal.pone.0131694
    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.
    Matched MeSH terms: Mycobacterium tuberculosis/genetics*; Mycobacterium tuberculosis/isolation & purification; Mycobacterium tuberculosis/pathogenicity
  13. Dehyab AS, Bakar MFA, AlOmar MK, Sabran SF
    Saudi J Biol Sci, 2020 Sep;27(9):2457-2478.
    PMID: 32884430 DOI: 10.1016/j.sjbs.2020.07.007
    Tuberculosis (TB) is a disease that affects one-third of the world's population. Although currently available TB drugs have many side effects, such as nausea, headache and gastrointestinal discomfort, no new anti-TB drugs have been produced in the past 30 years. Therefore, the discovery of a new anti-TB agent with minimal or no side effects is urgently needed. Many previous works have reported the effects of medicinal plants against Mycobacterium tuberculosis (MTB). However, none have focused on medicinal plants from the Middle Eastern and North African (MENA) region. This review highlights the effects of medicinal plants from the MENA region on TB. Medicinal plants from the MENA region have been successfully used as traditional medicine and first aid against TB related problems. A total of 184 plants species representing 73 families were studied. Amongst these species, 93 species contained more active compounds with strong anti-MTB activity (crude extracts and/or bioactive compounds with activities of 0-100 µg/ml). The extract of Inula helenium, Khaya senegalensis, Premna odorata and Rosmarinus officinalis presented the strongest anti-MTB activity. In addition, Boswellia papyrifera (Del) Hochst olibanum, Eucalyptus camaldulensis Dehnh leaves (river red gum), Nigella sativa (black cumin) seeds and genus Cymbopogon exhibited anti-TB activity. The most potent bioactive compounds included alantolactone, octyl acetate, 1,8-cineole, thymoquinone, piperitone, α- verbenol, citral b and α-pinene. These compounds affect the permeability of microbial plasma membranes, thus kill the mycobacterium spp. As a conclusion, plant species collected from the MENA region are potential sources of novel drugs against TB.
    Matched MeSH terms: Mycobacterium tuberculosis
  14. Dass SA, Norazmi MN, Dominguez AA, Miguel MESGS, Tye GJ
    Mol Immunol, 2018 09;101:189-196.
    PMID: 30007228 DOI: 10.1016/j.molimm.2018.07.001
    The discovery of heat shock protein 16 kDa antigen protein has deepen the understanding of latent tuberculosis since it was found to be primarily expressed by Mycobacterium tuberculosis during latent phase leading to the rapid optimization and development in terms of diagnosis and therapeutics. Recently, T cell receptor-like antibody has been explored extensively targeting various diseases due to its dual functionality (T cell receptor and antibody). In this study, a TCR-like domain antibody (A2/Ab) with the binding capacity to Mtb heat shock protein (HSP) 16 kDa antigen presented by major histocompatible complex (MHC) HLA-A*02 was successfully generated via biopanning against human domain antibody library. The generated antibody (A2/Ab) exhibited strong functionality and binding capacity against the target assuring the findings of this study to be beneficial for the development of latent tuberculosis diagnosis and immunotherapeutics in future.
    Matched MeSH terms: Mycobacterium tuberculosis
  15. Issa R, Seradja VH, Abdullah MK
    Genome Announc, 2016;4(3).
    PMID: 27365342 DOI: 10.1128/genomeA.00376-16
    Here, we report of the annotated genome sequence of Mycobacterium tuberculosis MTB221/11. The organism was isolated from the cerebrospinal fluid of a patient in Malaysia.
    Matched MeSH terms: Mycobacterium tuberculosis
  16. Hassan, M.K., Eko, N.F.H., Shafie, S.
    MyJurnal
    Tuberculosis (TB) is the second biggest killer disease after HIV. Therefore, early detection is vital to
    prevent its outbreak. This paper looked at an automated TB bacteria counting using Image Processing technique and Matlab Graphical User Interface (GUI) for analysing the results. The image processing algorithms used in this project involved Image Acquisition, Image Pre-processing and Image Segmentation. In order to separate any overlap between the TB bacteria, Watershed Segmentation techniques was proposed and implemented. There are two techniques in Watershed Segmentation which is Watershed Distance Transform Segmentation and Marker Based Watershed Segmentation. Marker Based Watershed Segmentation had 81.08 % accuracy compared with Distance Transform with an accuracy of 59.06%. These accuracies were benchmarked with manual inspection. It was observed that Distance Transform Watershed Segmentation has disadvantages over segmentation and produce inaccurate results. Automatic counting of TB bacteria algorithms have also been proven to be less time consuming, contains less human error and consumes less man-power.
    Matched MeSH terms: Mycobacterium tuberculosis
  17. Norazmi MN
    Virulence, 2017 10 03;8(7):1085-1087.
    PMID: 28605283 DOI: 10.1080/21505594.2017.1341035
    Matched MeSH terms: Mycobacterium tuberculosis
  18. Elmi OS, Hasan H, Abdullah S, Mat Jeab MZ, Ba Z, Naing NN
    Malays J Med Sci, 2016 Jul;23(4):17-25.
    PMID: 27660541 MyJurnal DOI: 10.21315/mjms2016.23.4.3
    Treating patients with multidrug-resistant tuberculosis (MDR-TB) strains is more complicated, complex, toxic, expensive, than treating patients with susceptible TB strains. This study aims to compare the treatment outcomes and potential factors associated between patients with MDR-TB and non MDR TB infections in peninsular Malaysia.
    Matched MeSH terms: Mycobacterium tuberculosis
  19. Ismail F, Couvin D, Farakhin I, Abdul Rahman Z, Rastogi N, Suraiya S
    PLoS One, 2014;9(12):e114832.
    PMID: 25502956 DOI: 10.1371/journal.pone.0114832
    Tuberculosis (TB) still constitutes a major public health problem in Malaysia. The identification and genotyping based characterization of Mycobacterium tuberculosis complex (MTBC) isolates causing the disease is important to determine the effectiveness of the control and surveillance programs.
    Matched MeSH terms: Mycobacterium tuberculosis/genetics*; Mycobacterium tuberculosis/pathogenicity
  20. Ang KC, Ibrahim P, Gam LH
    Biotechnol Appl Biochem, 2014 Mar-Apr;61(2):153-64.
    PMID: 23826872 DOI: 10.1002/bab.1137
    Mycobacterium tuberculosis is a causative agent of tuberculosis (TB). The ability of M. tuberculosis to be quiescent in the cell has caused the emergence of latent infection. A comprehensive proteomic analysis of M. tuberculosis H37Rv over three growth phases, namely mid-log (14-day culture), early stationary (28-day culture), and late stationary (50-day culture), was performed in order to study the change in proteome from the mid-log phase to late-stationary phase. Combination methods of two-dimensional electrophoresis (2-DE) and tandem mass spectrometry were used to generate proteome maps of M. tuberculosis at different growth phases. Ten proteins were detected differentially expressed in the late-stationary phase compared with the other two phases. These proteins were SucD, TrpD, and Rv2161c, which belong to metabolic pathway proteins; FadE5, AccD5, DesA1, and Rv1139c are proteins involved in cell wall or lipid biosynthesis, whereas TB21.7 and Rv3224 are conserved hypothetical proteins with unknown function. A surface antigen protein, DesA1, was not detectable in the late-stationary phase, although present in both log and early-stationary phases. The changes in the expression levels of these proteins were in line with the growth environment changes of the bacteria from mid-log phase to late-stationary phase. The information gathered may be valuable in the intervention against latent TB infection.
    Matched MeSH terms: Mycobacterium tuberculosis/genetics*; Mycobacterium tuberculosis/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links