Displaying publications 21 - 40 of 64 in total

Abstract:
Sort:
  1. Farzinebrahimi R, Mat Taha R, Rashid K, Syafawati Yaacob J
    ScientificWorldJournal, 2014;2014:407284.
    PMID: 24967432 DOI: 10.1155/2014/407284
    The leaf of Gardenia jasminoides Ellis was used as explants and was cultured on MS and WPM media supplemented with various concentrations of NAA, IAA, 2,4-D, IBA, TDZ, and Kn (0 to 5 mg L(-1) with 0.5 increment). After six months, the higher percentage of callus (100%) and the best dry and fresh weight of callus were formed on WPM medium supplemented with 2,4-D and NAA (2.0-3.0 mg L(-1)) and this amount was decreased from (84%) to (69%) when this media supplemented with Kinetin and TDZ (1 mg L(-1)) respectively were used. Leaf segments cultured on WPM media added with Kn (1 mg L(-1)) and TDZ (2 mg L(-1)) yielded the least amount of callus. It was found that WPM media added with IAA (4.5-5.0 mg L(-1)) were optimum for root induction from G. jasminoides plantlets. Antibacterial screening of leaf extracts (in vivo) showed no inhibitory effect against E. coli, P. aeruginosa, S. aureus, and B. cereus, in contrast to callus extracts from leaf cultures supplemented with NAA, which showed inhibition activity against E. coli and B. cereus. The callus extracts from leaf cultures grown on both MS and WPM media showed higher antioxidant and superoxide dismutase activities than leaf extracts.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  2. Ee SF, Oh JM, Mohd Noor N, Kwon TR, Mohamed-Hussein ZA, Ismail I, et al.
    Mol Biol Rep, 2013 Mar;40(3):2231-41.
    PMID: 23187733 DOI: 10.1007/s11033-012-2286-4
    The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  3. bin Hussein MZ, Zainal Z, Yahaya AH, Foo DW
    J Control Release, 2002 Aug 21;82(2-3):417-27.
    PMID: 12175754
    Formation of the so-called organic-inorganic nanohybrid material was exploited for the preparation of a controlled release formulation. The inorganic Zn-Al-layered double hydroxide (LDH) was used as a matrix, hosting an active agent or a guest, alpha-naphthaleneacetate (NAA), a plant growth regulator by self-assembly technique. The reverse process, i.e., the deintercalation or release of the guest, NAA was found to be rapid initially, followed by a more sustained release thereafter and this behavior was dependent on the pH of the release medium, the aqueous solution. The mechanism of release has been interpreted on the basis of the ion-exchange process between the NAA anion intercalated in the lamella host and nitrate or hydroxyl anions in the aqueous solution.
    Matched MeSH terms: Plant Growth Regulators/chemistry*
  4. Jusoh M, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2019 Jun;188(2):450-459.
    PMID: 30536033 DOI: 10.1007/s12010-018-02937-4
    Microalgae lipids and oils are potential candidates for renewable biofuels and nutritional inventions. Recent studies from our lab have shown that two plant hormones, auxin and jasmonic acid, influence microalgae growth and fatty acid accumulation. Therefore, in this study, a high oil-producing strain Chlorella vulgaris UMT-M1 was selected for hormonal study using gibberellin (GA). Exogenous GA3 was applied to early stationary culture of C. vulgaris UMT-M1. Results showed that GA3 gradually increases the cell density of C. vulgaris to up to 42% on days after treatment (DAT)-8 and also capable of delaying the algal senescence. However, the increment in cell density did not enhance the total oil production albeit transient modification of fatty acid compositions was observed for saturated (SFA) and polyunsaturated (PUFA) fatty acids. This illustrates that GA3 only promotes cell division and growth but not the oil accumulation. In addition, application of GA3 in culture medium was shown to promote transient increment of palmitic (C16:0) and stearic (C18:0) acids from DAT-4 to DAT-6 and these changes are correlated with the expression of β-ketoacyl ACP synthase I (KAS I) gene.
    Matched MeSH terms: Plant Growth Regulators/pharmacology
  5. Cherian S, Figueroa CR, Nair H
    J Exp Bot, 2014 Sep;65(17):4705-22.
    PMID: 24994760 DOI: 10.1093/jxb/eru280
    Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
    Matched MeSH terms: Plant Growth Regulators/metabolism*
  6. Baba ZA, Hamid B, Sheikh TA, Alotaibi SH, El Enshasy HA, Ansari MJ, et al.
    Molecules, 2021 Sep 23;26(19).
    PMID: 34641302 DOI: 10.3390/molecules26195758
    Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.
    Matched MeSH terms: Plant Growth Regulators/metabolism*
  7. Wong GR, Mazumdar P, Lau SE, Harikrishna JA
    J Plant Physiol, 2018 Dec;231:219-233.
    PMID: 30292098 DOI: 10.1016/j.jplph.2018.09.018
    Genetic improvement is an important approach for crop improvement towards yield stability in stress-prone areas. Functional analysis of candidate stress response genes can provide key information to allow the selection and modification of improved crop varieties. In this study, the constitutive expression of a banana cDNA, MaRHD3 in Arabidopsis improved the ability of transgenic lines to adapt to drought conditions. Transgenic Arabidopsis plants expressing MaRHD3 had roots with enhanced branching and more root hairs when challenged with drought stress. The MaRHD3 plants had higher biomass accumulation, higher relative water content, higher chlorophyll content and an increase in activity of reactive oxygen species (ROS) scavenging enzymes; SOD, CAT, GR, POD and APX with reduced water loss rates compared to control plants. The analysis of oxidative damage indicated lower cell membrane damage in transgenic lines compared to control plants. These findings, together with data from higher expression of ABF-3 and higher ABA content of drought-stressed transgenic MaRHD3 expressing plants, support the involvement of the ABA signal pathway and ROS scavenging enzyme systems in MaRHD3 mediated drought tolerance.
    Matched MeSH terms: Plant Growth Regulators/metabolism
  8. Rahnamaie-Tajadod R, Goh HH, Mohd Noor N
    J Plant Physiol, 2019 Sep;240:152994.
    PMID: 31226543 DOI: 10.1016/j.jplph.2019.152994
    Polygonum minus Huds. is a medicinal aromatic plant rich in terpenes, aldehydes, and phenolic compounds. Methyl jasmonate (MeJA) is a plant signaling molecule commonly applied to elicit stress responses to produce plant secondary metabolites. In this study, the effects of exogenous MeJA treatment on the composition of volatile organic compounds (VOCs) in P. minus leaves were investigated by using a metabolomic approach. Time-course changes in the leaf composition of VOCs on days 1, 3, and 5 after MeJA treatment were analyzed through solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The VOCs found in MeJA-elicited leaves were similar to those found in mock-treated leaves but varied in quantity at different time points. We focused our analysis on the content and composition of monoterpenes, sesquiterpenes, and green leaf volatiles (GLVs) within the leaf samples. Our results suggest that MeJA enhances the activity of biosynthetic pathways for aldehydes and terpenes in P. minus. Hence, the production of aromatic compounds in this medicinal herb can be increased by MeJA elicitation. Furthermore, the relationship between MeJA elicitation and terpene biosynthesis in P. minus was shown through SPME-GC-MS analysis of VOCs combined with transcriptomic analysis of MeJA-elicited P. minus leaves from our previous study.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  9. Brennan M, Paterson L, Baharudin AAA, Stanisz-Migal M, Hoebe PN
    J Plant Physiol, 2019 Dec;243:153054.
    PMID: 31648109 DOI: 10.1016/j.jplph.2019.153054
    Adhesion of the barley husk to the underlying caryopsis requires the development of a cuticular cementing layer on the caryopsis surface. Differences in adhesion quality among genotypes have previously been correlated with cementing layer composition, which is thought to influence caryopsis cuticle permeability, the hypothesised mechanism of adhesion mediation. It is not yet known whether differences in adhesion quality among genotypes are determined by changes in caryopsis cuticle permeability. We examined changes in candidate cementing layer biosynthetic and regulatory genes to investigate the genetic mechanisms behind husk adhesion quality. We used both commercially relevant UK malting cultivars and older European lines to ensure phenotypic diversity in adhesion quality. An ethylene responsive transcription factor (NUD) is required for the development of the cementing layer. To examine correlations between gene expression, cementing layer permeability and husk adhesion quality we also treated cultivars with ethephon (2-chloroethylphosphonic acid) which breaks down to ethylene, and silver thiosulphate which inhibits ethylene reception, and measured caryopsis cuticle permeability. Differential adhesion qualities among genotypes are not determined by NUD expression during development of the cementing material alone, but could result from differences in biosynthetic gene expression during cementing layer development in response to longer-term NUD expression patterns. Altered caryopsis cuticle permeability does result in altered adhesion quality, but the correlation is not consistently positive or negative. Cuticle permeability is therefore not the mechanism that determines husk adhesion quality, but is likely a consequence of the required cuticular compositional changes that determine adhesion.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  10. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Plant Growth Regulators/pharmacology
  11. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H
    Plant J, 2017 Jul;91(1):97-113.
    PMID: 28370622 DOI: 10.1111/tpj.13549
    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis.
    Matched MeSH terms: Plant Growth Regulators/metabolism
  12. Mohamad Zuldin NN, Said IM, Mohd Noor N, Zainal Z, Jin Kiat C, Ismail I
    ScientificWorldJournal, 2013;2013:209434.
    PMID: 24065873 DOI: 10.1155/2013/209434
    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L⁻¹ 2,4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L⁻¹ 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L⁻¹ yeast extract (9.275 ± 0.082 mg L⁻¹) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3  μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L⁻¹).
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  13. Ahmed AB, Rao AS, Rao MV, Taha RM
    ScientificWorldJournal, 2012;2012:897867.
    PMID: 22629221 DOI: 10.1100/2012/897867
    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  14. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Plant Growth Regulators
  15. Nakasha JJ, Sinniah UR, Kemat N, Mallappa KS
    Pharmacogn Mag, 2016 Jul;12(Suppl 4):S460-S464.
    PMID: 27761075
    BACKGROUND: Chlorophytum borivilianum is an industrially valued medicinal crop. Propagation through seeds is not feasible because of low germination percentage and long dormancy period. Therefore, callus culture and plant regeneration can be an alternative to improve this crop production. Also, callus can serve as an alternative source of bioactive compounds.

    OBJECTIVE: To evaluate the effect of different phytohormones on callus induction, subculture cycle, and regeneration studies of callus in C. borivilianum.

    MATERIALS AND METHODS: Young shoot buds of C. borivilianum were inoculated on Murashige and Skoog medium fortified with 3% sucrose and different concentrations (0, 1, 5, 10, and 15 mg/L) of either naphthalene acetic acid or 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid and callus induction was evaluated up to four subcultures cycles. Shoot regeneration from callus was studied on Murashige and Skoog media fortified with 6-benzylaminopurine andkinetin or thidiazuron at varied levels (0, 0.5, 1, 2, and 3 mg/L). Microshoots were rooted on Murashige and Skoog media supplemented with 1.0 mg/L indole-3-butyric acid and plantlets were acclimatized before transferred to the natural conditions.

    RESULTS: Callus induction was better evidenced on Murashige and Skoog media containing 5 mg/L 2,4-dichlorophenoxyacetic acid up to fourth subculture. Callus differentiated into shoots on Murashige and Skoog media fortified with 6-benzylaminopurine or kinetin, whereas thidiazuron completely failed to regenerate shoots. Furthermore, microshoots rooted on 1.0 mg/L indole-3-butyric acid containing Murashige and Skoog media. The rooted plantlets were successfully acclimatized and established in soil with 88.3% survivability.

    CONCLUSION: The type of auxins played an important role in inducing callus tissue from shoot bud explants of Safed musli. In future, this in vitro protocol could benefit in crop improvement programs and serve as a new source of bioactive compounds from Safed musli callus tissue for various therapeutic applications.

    SUMMARY: Explants de-differentiated to form callus on Murashige and Skoog media containing 5 mg/L 2,4-D up to fourth subculture.Callus re-differentiated into shoots on Murashige and Skoog media fortified with 0.5 mg/L BAP.In vitro rooting of shoots was achieved on 1.0 mg/L IBA containing Murashige and Skoog media.The rooted plantlets were successfully acclimatized and established in soil with 88.3% survivability. Abbreviations used: MS: Murashige and Skoog, NAA: naphthalene acetic acid, 2,4-D: 2,4-dichlorophenoxyacetic acid, IAA: indole-3-acetic acid, BAP: 6-benzylaminopurine, Kn: Kinetin, TDZ: thidiazuron, IBA: indole-3-butyric acid, RCBD: Randomized Complete Block Design, DMRT: Duncan's Multiple Range Test.

    Matched MeSH terms: Plant Growth Regulators
  16. Ling, A.P.K., Halmi, M.I.E., Hussein, S., Ong S.L.
    MyJurnal
    The mistletoe fig (Ficus deltoidea) is frequently found in several areas of the world, and primarily functions as houseplant or an ornamental shrub. The plant is discovered indigenous generally in Asia tropical region for example Indonesia, Philippines, Malaysia, and Thailand. Scientific studies on the effect of plant growth regulators on cells production from this plant are vital as optimization of cells production may result in effective production of secondary products characterization and output. The growth of cell suspension cultures from this plant shows sigmoidal property. In this work, we model the effect of the plant growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D) on the growth kinetics of the cells from this plant according to the modified Gompertz model. The coefficient of determination showed good agreement between experimental and predicted data with values ranging from 0.97-0.98. The results showed that 2,4-D at 2 mg/L was optimal for achieving the highest cells growth rate. It is anticipated that the growth parameter constants extracted from the modelling exercise will be helpful in the future for additional secondary modelling on the effect of media conditions as well as other factors on cells growth.
    Matched MeSH terms: Plant Growth Regulators
  17. Sadeghipour O
    Sains Malaysiana, 2017;46:189-195.
    Lead (Pb) is one of the most abundant toxic heavy metals which adversely affected growth and yield of crop plants. Nitric oxide (NO), an endogenous signaling molecule, has been suggested to be involved in defense responses to biotic and abiotic stresses in plants. The present study was done to induce Pb tolerance in cowpea plants by exogenous NO application using two levels of Pb, 0 and 200 mg Pb (NO3)2 kg-1 soil and three NO levels, 0, 0.5 and 1 mM sodium nitroprusside (SNP), as NO donor. The results showed that Pb treatment caused a significant increase in Pb concentration in all plant parts. Roots had higher levels of Pb than the stems, leaves and seeds. Furthermore, lead toxicity reduced auxin (IAA), cytokinin and gibberellic acid (GA3) content but increased abscisic acid (ABA) level. Moreover Pb stress decreased stomatal conductance, leaf area and consequently seed yield of cowpea. Exogenous application of NO at 0.5 mM noticeably alleviated the lead toxicity by improving the leaf area, stomatal conductance and seed yield. NO increased Pb tolerance by lowering Pb uptake and translocation, enhancing the promoting phytohormone (IAA, cytokinin and GA3) level and reducing ABA content.
    Matched MeSH terms: Plant Growth Regulators
  18. Maluin FN, Hussein MZ
    Molecules, 2020 Apr 01;25(7).
    PMID: 32244664 DOI: 10.3390/molecules25071611
    The rise in the World's food demand in line with the increase of the global population has resulted in calls for more research on the production of sustainable food and sustainable agriculture. A natural biopolymer, chitosan, coupled with nanotechnology could offer a sustainable alternative to the use of conventional agrochemicals towards a safer agriculture industry. Here, we review the potential of chitosan-based agronanochemicals as a sustainable alternative in crop protection against pests, diseases as well as plant growth promoters. Such effort offers better alternatives: (1) the existing agricultural active ingredients can be encapsulated into chitosan nanocarriers for the formation of potent biocides against plant pathogens and pests; (2) the controlled release properties and high bioavailability of the nanoformulations help in minimizing the wastage and leaching of the agrochemicals' active ingredients; (3) the small size, in the nanometer regime, enhances the penetration on the plant cell wall and cuticle, which in turn increases the argochemical uptake; (4) the encapsulation of agrochemicals in chitosan nanocarriers shields the toxic effect of the free agrochemicals on the plant, cells and DNA, thus, minimizing the negative impacts of agrochemical active ingredients on human health and environmental wellness. In addition, this article also briefly reviews the mechanism of action of chitosan against pathogens and the elicitations of plant immunity and defense response activities of chitosan-treated plants.
    Matched MeSH terms: Plant Growth Regulators/pharmacology; Plant Growth Regulators/chemistry
  19. Azizi P, Rafii MY, Maziah M, Abdullah SN, Hanafi MM, Latif MA, et al.
    Mech. Dev., 2015 Feb;135:1-15.
    PMID: 25447356 DOI: 10.1016/j.mod.2014.11.001
    Auxin and cytokinin regulate different critical processes involved in plant growth and environmental feedbacks. These plant hormones act either synergistically or antagonistically to control the organisation, formation and maintenance of meristem. Meristem cells can be divided to generate new tissues and organs at the locations of plant postembryonic development. The aboveground plant organs are created by the shoot apical meristem (SAM). It has been proposed that the phytohormone, cytokinin, plays a positive role in the shoot meristem function, promotes cell expansion and promotes an increasing size of the meristem in Arabidopsis, whereas it has the reverse effects in the root apical meristem (RAM). Over the last few decades, it has been believed that the apically derived auxin suppresses the shoot branching by inactivating the axillary buds. However, it has recently become clear that the mechanism of action of auxinis indirect and multifaceted. In higher plants, the regulatory mechanisms of the SAM formation and organ separation are mostly unknown. This study reviews the effects and functions of cytokinin and auxin at the shoot apical meristem. This study also highlights the merger of the transcription factor activity with the actions of cytokinin/auxin and their complex interactions with the shoot meristem in rice.
    Matched MeSH terms: Plant Growth Regulators/physiology*
  20. Babaei N, Abdullah NA, Saleh G, Abdullah TL
    ScientificWorldJournal, 2014;2014:275028.
    PMID: 24723799 DOI: 10.1155/2014/275028
    A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links