Displaying publications 21 - 39 of 39 in total

Abstract:
Sort:
  1. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Polyesters/metabolism*
  2. Norhafini H, Huong KH, Amirul AA
    Int J Biol Macromol, 2019 Mar 15;125:1024-1032.
    PMID: 30557643 DOI: 10.1016/j.ijbiomac.2018.12.121
    P(3HB-co-4HB) with a high 4HB monomer composition was previously successfully produced using the transformant Cupriavidus malaysiensis USMAA1020 containing an additional copy of the PHA synthase gene. In this study, high PHA density fed-batch cultivation strategies were developed for such 4HB-rich P(3HB-co-4HB). The pulse, constant and mixed feeding strategies resulted in high PHA accumulation, with a PHA content of 74-92 wt% and 4HB monomer composition of 92-99 mol%. The pulse-feed of carbon and nitrogen resulted in higher PHA concentration (30.7 g/L) than carbon alone (22.3 g/L), suggesting that a trace amount of nitrogen is essential to support cell density for PHA accumulation. Constant feeding was found to be a more feasible strategy than mixed feeding, since the latter caused a drastic fluctuation in the C/N ratio, as evidenced by higher biomass formation indicating more carbon flux towards the competitive TCA pathway. A two-times carbon and nitrogen pulse feeding was the most optimal strategy achieving 92 wt% accommodation of the total biomass, with the highest PHA concentration (46 g/L) and yield (Yp/x) of 11.5 g/g. The strategy has kept the C/N at optimal ratio during the active PHA-producing phase. This is the first report of the production of high PHA density for 4HB-rich P(3HB-co-4HB).
    Matched MeSH terms: Polyesters/metabolism*
  3. Ng LM, Sudesh K
    J Biosci Bioeng, 2016 Nov;122(5):550-557.
    PMID: 27132174 DOI: 10.1016/j.jbiosc.2016.03.024
    Aquitalea sp. USM4 (JCM 19919) was isolated from a freshwater sample at Lata Iskandar Waterfall in Perak, Malaysia. It is a rod-shaped, gram-negative bacterium with high sequence identity (99%) to Aquitalea magnusonii based on 16S rRNA gene analysis. Aquitalea sp. USM4 also possessed a PHA synthase gene (phaC), which had amino acid sequence identity of 77-78% to the PHA synthase of Chromobacterium violaceum ATCC12472 and Pseudogulbenkiania sp. NH8B. PHA biosynthesis results showed that wild-type Aquitalea sp. USM4 was able to accumulate up to 1.5 g/L of poly(3-hydroxybutyrate), [P(3HB)]. The heterologous expression of the PHA synthase gene of Aquitalea sp. USM4 (phaCAq) in Cupriavidus necator PHB(-)4 had resulted in PHA accumulation up to 3.2 g/L of P(3HB). It was further confirmed by (1)H nuclear magnetic resonance (NMR) analysis that Aquitalea sp. USM4 and C. necator PHB(-)4 transformant were able to produce PHA containing 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB) and 3-hydroxy-4-methylvalerate (3H4MV) monomers from suitable precursor substrates. Interestingly, relatively high PHA synthase activity of 863 U/g and 1402 U/g were determined in wild-type Aquitalea sp. USM4 and C. necator PHB(-)4 transformant respectively. This is the first report on the member of genus Aquitalea as a new PHA producer as well as in vitro and in vivo characterization of a novel PHA synthase from Aquitalea sp. USM4.
    Matched MeSH terms: Polyesters/metabolism
  4. Alias Z, Tan IK
    Bioresour Technol, 2005 Jul;96(11):1229-34.
    PMID: 15734309
    In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Matched MeSH terms: Polyesters/metabolism*
  5. Tu Y, Ahmad N, Briscoe J, Zhang DW, Krause S
    Anal Chem, 2018 07 17;90(14):8708-8715.
    PMID: 29932632 DOI: 10.1021/acs.analchem.8b02244
    Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 μm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.
    Matched MeSH terms: Polyesters/metabolism*
  6. Vasudevan A, Majumder N, Sharma I, Kaur I, Sundarrajan S, Venugopal JR, et al.
    ACS Biomater Sci Eng, 2023 Nov 13;9(11):6357-6368.
    PMID: 37847169 DOI: 10.1021/acsbiomaterials.3c01216
    Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture. In the current study, we fabricated liver-specific nanofiber scaffolds with polylactic acid (PLA) along with a decellularized liver extracellular matrix (LEM) by the electrospinning technique. The fabricated hybrid PLA-LEM scaffolds were more hydrophilic and had better swelling properties than the PLA scaffolds. The hybrid scaffolds had a pore size of 38 ± 8 μm and supported primary rat hepatocyte cultures for 10 days. Increased viability (2-fold increase in the number of live cells) and functionality (5-fold increase in albumin secretion) were observed in primary hepatocytes cultured on the PLA-LEM scaffolds as compared to those on conventional collagen-coated plates on day 10 of culture. A significant increase in CYP1A2 enzyme activity was observed in hepatocytes cultured on PLA-LEM hybrid scaffolds in comparison to those on collagen upon induction with phenobarbital. Drugs like acetaminophen and rifampicin showed the highest toxicity in hepatocytes cultured on hybrid scaffolds. Also, the lethal dose of these drugs in rodents was accurately predicted as 1.6 g/kg and 594 mg/kg, respectively, from the corresponding IC50 values obtained from drug-treated hepatocytes on hybrid scaffolds. Thus, the fabricated liver-specific electrospun scaffolds maintained primary hepatocyte viability and functionality for an extended period in culture and served as an effective ex vivo drug screening platform to predict an accurate in vivo drug-induced hepatotoxicity.
    Matched MeSH terms: Polyesters/metabolism
  7. Huong KH, Teh CH, Amirul AA
    Int J Biol Macromol, 2017 Aug;101:983-995.
    PMID: 28373050 DOI: 10.1016/j.ijbiomac.2017.03.179
    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mwof 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.
    Matched MeSH terms: Polyesters/metabolism*
  8. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Polyesters/metabolism
  9. Pakalapati H, Arumugasamy SK, Jewaratnam J, Wong YJ, Khalid M
    Biopolymers, 2018 Dec;109(12):e23240.
    PMID: 30489632 DOI: 10.1002/bip.23240
    A statistical approach with D-optimal design was used to optimize the process parameters for polycaprolactone (PCL) synthesis. The variables selected were temperature (50°C-110°C), time (1-7 h), mixing speed (50-500 rpm) and monomer/solvent ratio (1:1-1:6). Molecular weight was chosen as response and was determined using matrix-assisted laser desorption/ionization time of flight (MALDI TOF). Using the D-optimal method in design of experiments, the interactions between parameters and responses were analysed and validated. The results show a good agreement with a minimum error between the actual and predicted values.
    Matched MeSH terms: Polyesters/metabolism*
  10. Huong KH, Azuraini MJ, Aziz NA, Amirul AA
    J Biosci Bioeng, 2017 Jul;124(1):76-83.
    PMID: 28457658 DOI: 10.1016/j.jbiosc.2017.02.003
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The KLa-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the KLa values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy.
    Matched MeSH terms: Polyesters/metabolism*
  11. Rathi DN, Amir HG, Abed RM, Kosugi A, Arai T, Sulaiman O, et al.
    J Appl Microbiol, 2013 Feb;114(2):384-95.
    PMID: 23176757 DOI: 10.1111/jam.12083
    Halophilic micro-organisms have received much interest because of their potential biotechnological applications, among which is the capability of some strains to synthesize polyhydroxyalkanoates (PHA). Halomonas sp. SK5, which was isolated from hypersaline microbial mats, accumulated intracellular granules of poly(3-hydroxybutyrate) [P(3HB)] in modified accumulation medium supplemented with 10% (w/v) salinity and 3% (w/v) glucose.
    Matched MeSH terms: Polyesters/metabolism
  12. Martla M, Umsakul K, Sudesh K
    J Basic Microbiol, 2018 Nov;58(11):977-986.
    PMID: 30095175 DOI: 10.1002/jobm.201800279
    Polyhydroxyalkanoates (PHAs) has been paid great attention because of its useful thermoplastic properties and complete degradation in various natural environments. But, at industrial level, the successful commercialization of PHAs is limited by the high production cost due to the expensive carbon source and recovery processes. Pseudomonas mendocina PSU cultured for 72 h in mineral salts medium (MSM) containing 2% (v/v) biodiesel liquid waste (BLW) produced 79.7 wt% poly(3-hydroxybutyrate) (PHB) at 72 h. In addition, this strain produced 43.6 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 8.6 HV mol% at 60 h when added with 0.3% sodium propionate. The synthesized intracellular PHA granules were recovered and purified by the recently reported biological method using mealworms. The weight average molecular weight (Mw ) and number average molecular weight (Mn ) of the biologically extracted PHA were higher than that from the chloroform extraction with comparable melting temperature (Tm ) and high purity. This study has successfully established a low-cost process to synthesize PHAs from BLW and subsequently confirmed the ability of mealworms to extract PHAs from various kinds of bacterial cells.
    Matched MeSH terms: Polyesters/metabolism*
  13. Majid MI, Akmal DH, Few LL, Agustien A, Toh MS, Samian MR, et al.
    Int J Biol Macromol, 1999 Jun-Jul;25(1-3):95-104.
    PMID: 10416655
    A locally isolated soil microorganism identified as Erwinia sp. USMI-20 has been found to produce poly(3-hydroxybutyrate), P(3HB), from either palm oil or glucose and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), from a combination of palm oil and a second carbon source of either one of the following compounds: propionic acid, n-propanol, valeric acid and n-pentanol. It was found that Erwinia sp. USMI-20 could produce P(3HB) up to 69 wt.% polymer content with a dry cell weight of 4.4 g/l from an initial amount of 14.5 g/l of glucose followed by a feeding rate of glucose at 0.48 g/h glucose. On the other hand, the bacteria can achieve 46 wt.% of P(3HB) and a dry cell weight of 3.6 g/l from a batch fermentation in a 10-l fermentor from an initial concentration of 4.6 g/l of palm oil. Further characterisation of the polymer production was also carried out by using different types of palm oil. Among the different palm oils that were used, crude palm oil was the best lipid source for P(3HB) production as compared to palm olein and palm kernel oil. In the production of the copolymer, P(3HB-co-3HV), the highest mole fraction of 3-HV units could be as high as 47 mol% from a single feeding of valeric acid upon initial growth on palm oil.
    Matched MeSH terms: Polyesters/metabolism*
  14. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA
    Protein Expr Purif, 2019 03;155:35-42.
    PMID: 30352276 DOI: 10.1016/j.pep.2018.10.008
    Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.
    Matched MeSH terms: Polyesters/metabolism*
  15. Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K
    PLoS One, 2013;8(10):e78528.
    PMID: 24205250 DOI: 10.1371/journal.pone.0078528
    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.
    Matched MeSH terms: Polyesters/metabolism
  16. Pachiyappan S, Shanmuganatham Selvanantham D, Kuppa SS, Chandrasekaran S, Samrot AV
    IET Nanobiotechnol, 2019 Jun;13(4):416-427.
    PMID: 31171747 DOI: 10.1049/iet-nbt.2018.5053
    In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.
    Matched MeSH terms: Polyesters/metabolism*
  17. Syafiq IM, Huong KH, Shantini K, Vigneswari S, Aziz NA, Amirul AA, et al.
    Enzyme Microb Technol, 2017 Mar;98:1-8.
    PMID: 28110659 DOI: 10.1016/j.enzmictec.2016.11.011
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is noted for its high biocompatibility, which makes it an excellent candidate for biopharmaceutical applications. The wild-type Cupriavidus sp. USMAA1020 strain is able to synthesize P(3HB-co-4HB) copolymers with different 4HB monomer compositions (up to 70mol%) in shaken flask cultures. Combinations of 4HB carbon precursors consisting of 1,6-hexanediol and γ-butyrolactone were applied for the production of P(3HB-co-4HB) with different 4HB molar fraction. A sharp increase in 4HB monomer composition was attained by introducing additional copies of PHA synthase gene (phaC), responsible for P(3HB-co-4HB) polymerization. The phaC of Cupriavidus sp. USMAA1020 and Cupriavidus sp. USMAA2-4 were cloned and heterologously introduced into host, wild-type Cupriavidus sp. USMAA1020. The gene dosage treatment resulted in the accumulation of 93mol% 4HB by the transformant strains when grown in similar conditions as the wild-type USMAA1020. The PHA synthase activities for both transformants were almost two-fold higher than the wild-type. The ability of the transformants to produce copolymers with high 4HB monomer composition was also tested in large scale production system using 5L and 30L bioreactors with a constant oxygen mass transfer rate. The 4HB monomer composition could be maintained at a range of 83-89mol%. The mechanical and thermal properties of copolymers improved with increasing 4HB monomer composition. The copolymers produced could be tailored for specific biopharmaceutical applications based on their properties.
    Matched MeSH terms: Polyesters/metabolism*
  18. Rennukka M, Sipaut CS, Amirul AA
    Biotechnol Prog, 2014 Nov-Dec;30(6):1469-79.
    PMID: 25181613 DOI: 10.1002/btpr.1986
    This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.
    Matched MeSH terms: Polyesters/metabolism*
  19. Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, et al.
    BMC Microbiol, 2014;14:318.
    PMID: 25539583 DOI: 10.1186/s12866-014-0318-z
    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host.
    Matched MeSH terms: Polyesters/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links