Displaying publications 21 - 34 of 34 in total

Abstract:
Sort:
  1. Meor Yusoff, M.S., Hishamuddin, H., Choo, Thye Foo
    MyJurnal
    The storage of oil sludge at refineries is a major problem to the petroleum industry. Oil sludge treatments such as by using sludge farming, incineration, physical and chemical techniques have been applied to separate the hydrocarbon from the solid sediment. The paper relates a characteristic study performed on solid sediment from a local oil sludge sample for making sintered brick. The study includes the used of XRD, XRF, digital microscopy and particle size analyzer. The result shows that the sample highly contains quartz minerals with particle size ranging from 0.5 – 200 ȝm. The chemical phosphorous from the surfactant can be removed by washing to make this solid sediment to be used as a material in the brick making.
    Matched MeSH terms: Pulmonary Surfactants
  2. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Ree M
    Polymers (Basel), 2020 Feb 19;12(2).
    PMID: 32093008 DOI: 10.3390/polym12020477
    A series of polystyrene nanoparticles (PS-1, PS-2, PS-3, and PS-4) in aqueous solutions were investigated in terms of morphological structure, size, and size distribution. Synchrotron small-angle X-ray scattering analysis (SAXS) was carried out, providing morphology details, size and size distribution on the particles. PS-1, PS-2, and PS-3 were confirmed to behave two-phase (core and shell) spherical shapes, whereas PS-4 exhibited a single-phase spherical shape. They all revealed very narrow unimodal size distributions. The structural parameter details including radial density profile were determined. In addition, the presence of surfactant molecules and their assemblies were detected for all particle solutions, which could originate from their surfactant-assisted emulsion polymerizations. In addition, dynamic light scattering (DLS) analysis was performed, finding only meaningful hydrodynamic size and intensity-weighted mean size information on the individual PS solutions because of the particles' spherical nature. In contrast, the size distributions were extracted unrealistically too broad, and the volume- and number-weighted mean sizes were too small, therefore inappropriate to describe the particle systems. Furthermore, the DLS analysis could not detect completely the surfactant and their assemblies present in the particle solutions. Overall, the quantitative SAXS analysis confirmed that the individual PS particle systems were successfully prepared with spherical shape in a very narrow unimodal size distribution.
    Matched MeSH terms: Pulmonary Surfactants
  3. Adil M, Lee K, Mohd Zaid H, Ahmad Latiff NR, Alnarabiji MS
    PLoS One, 2018;13(2):e0193518.
    PMID: 29489897 DOI: 10.1371/journal.pone.0193518
    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature.
    Matched MeSH terms: Pulmonary Surfactants
  4. Huei Lim W, Jean Tan Y, Sin Lee C, Meng Er H, Fung Wong S
    Iran J Pharm Res, 2017;16(2):451-461.
    PMID: 28979300
    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 (°)C) and 45 (°)C with consistent drug loading capacity.
    Matched MeSH terms: Pulmonary Surfactants
  5. Sweeney S, Leo BF, Chen S, Abraham-Thomas N, Thorley AJ, Gow A, et al.
    Colloids Surf B Biointerfaces, 2016 Sep 01;145:167-75.
    PMID: 27182651 DOI: 10.1016/j.colsurfb.2016.04.040
    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.
    Matched MeSH terms: Pulmonary Surfactants/pharmacology*
  6. Lim WL, Lim CT, Chye JK
    Med J Malaysia, 1998 Dec;53(4):376-84.
    PMID: 10971981
    Thirty preterm infants weighing > or = 800 g with clinical and radiological evidence of respiratory distress syndrome (RDS) requiring mechanical ventilation with FiO2 of > or = 40% were given modified bovine surfactant (Survanta). They were compared with equal number of historical controls. Infants who received surfactant showed prompt and highly significant improvement in FiO2, mean airway pressure, arterial/alveolar oxygen tension ratio and ventilatory index. There was significant improvement in mortality rate (10% vs 33%; p = 0.03). Among the survivors, surfactant-treated infants required shorter duration of continuous positive airway pressure (CPAP) (3.4 vs 9.6 days; p = 0.04). For survivors with birthweight of > 1000 g, surfactant-treated infants required shorter duration of ventilatory support (intermittent positive pressure ventilation + CPAP) (7.5 vs 18.9 days, p = 0.02). Overall, surfactant-treated infants achieved full enteral feeds sooner (15.7 days vs 24.6 days; p = 0.03) and required shorter duration of total parenteral nutrition (13.9 days vs 25.6 days; p = 0.02). We concluded that surfactant replacement therapy was effective in the treatment of preterm infants with RDS.
    Matched MeSH terms: Pulmonary Surfactants/therapeutic use*
  7. Goh AYT, Chan PWK, Roziah M
    Singapore Med J, 1999 Feb;40(2):113-6.
    PMID: 10414173
    Acute respiratory distress syndrome (ARDS) associated with severe respiratory syncytial virus infection is rare. We report a 5-month-old Indian girl who was admitted to our intensive care ward with severe respiratory failure who fulfilled the criteria for ARDS using both Murray's Lung Injury Score of > 2.5 and the American-European Consensus Conference definition for ARDS. She developed diffuse bilateral alveolar infiltrates, severe hypoxaemia (PaO2/FiO2 < 100) and required high PEEP (> 15 cm H2O) 24 hours after admission. RSV was isolated from her nasopharyngeal secretion. She also had clinical features suggestive of a primary immunodeficiency and had laboratory evidence of combined T and B cell defect. There was unsustained clinical improvement with a dose of surfactant administered at 36 hours of PICU stay, and she continued to deteriorate and succumbed after 19 days in the PICU.
    Matched MeSH terms: Pulmonary Surfactants/therapeutic use*
  8. Boo NY, Cheong KB, Cheong SK, Lye MS, Zulfiqar MA
    J Paediatr Child Health, 1997 Aug;33(4):329-34.
    PMID: 9323622
    OBJECTIVES: To compare the overall accuracy of the stable microbubble test (SM test) with measurement of level of surfactant protein A (SP-A) of tracheal aspirate for the diagnosis of respiratory distress syndrome (RDS).

    METHODOLOGY: Tracheal aspirates were obtained from neonates on ventilatory support. The SM test was carried out on specimens of tracheal aspirate immediately after collection. Levels of SP-A in tracheal aspirates were determined by enzyme-linked immunosorbent assay (ELISA) method. The results of the SM test and SP-A level of the tracheal aspirates were compared against the clinical diagnosis of RDS based on clinical, radiological and bacteriological findings.

    RESULTS: Both the median microbubble counts (6 microbubbles/mm2, range = 0-90) and median SP-A levels (100 micrograms/L, range = 0-67447) of infants with RDS were significantly lower than those of infants with no obvious lung pathology (P < 0.0001), and pneumonia (P < 0.0001). The SM test of tracheal aspirates had higher overall accuracy for the diagnosis of RDS than measurement of SP-A levels (94.6% vs 82.4%). When the receiver operating characteristic (ROC) curves of both tests for RDS were compared, the area under the ROC curve of the SM test was larger (0.9689) than that of the SP-A method (0.8965).

    CONCLUSIONS: This study showed that the SM test of tracheal aspirate was a useful bedside diagnostic test for RDS. It could be carried out at any time after birth on infants requiring ventilatory support.

    Matched MeSH terms: Pulmonary Surfactants/analysis*
  9. Ho JJ, Subramaniam P, Davis PG
    Cochrane Database Syst Rev, 2015 Jul 04;2015(7):CD002271.
    PMID: 26141572 DOI: 10.1002/14651858.CD002271.pub2
    BACKGROUND: Respiratory distress syndrome (RDS) is the single most important cause of morbidity and mortality in preterm infants. In infants with progressive respiratory insufficiency, intermittent positive pressure ventilation (IPPV) with surfactant is the standard treatment for the condition, but it is invasive, potentially resulting in airway and lung injury. Continuous distending pressure (CDP) has been used for the prevention and treatment of RDS, as well as for the prevention of apnoea, and in weaning from IPPV. Its use in the treatment of RDS might reduce the need for IPPV and its sequelae.

    OBJECTIVES: To determine the effect of continuous distending pressure (CDP) on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.Subgroup analyses were planned on the basis of birth weight (> or < 1000 or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), methods of application of CDP (i.e. CPAP and CNP), application early versus late in the course of respiratory distress and high versus low pressure CDP and application of CDP in tertiary compared with non-tertiary hospitals, with the need for sensitivity analysis determined by trial quality.At the 2008 update, the objectives were modified to include preterm infants with respiratory failure.

    SEARCH METHODS: We used the standard search strategy of the Neonatal Review Group. This included searches of the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, 2015 Issue 4), MEDLINE (1966 to 30 April 2015) and EMBASE (1980 to 30 April 2015) with no language restriction, as well as controlled-trials.com, clinicaltrials.gov and the International Clinical Trials Registry Platform of the World Health Organization (WHO).

    SELECTION CRITERIA: All random or quasi-random trials of preterm infants with respiratory distress were eligible. Interventions were continuous distending pressure including continuous positive airway pressure (CPAP) by mask, nasal prong, nasopharyngeal tube or endotracheal tube, or continuous negative pressure (CNP) via a chamber enclosing the thorax and the lower body, compared with spontaneous breathing with oxygen added as necessary.

    DATA COLLECTION AND ANALYSIS: We used standard methods of The Cochrane Collaboration and its Neonatal Review Group, including independent assessment of trial quality and extraction of data by each review author.

    MAIN RESULTS: We included six studies involving 355 infants - two using face mask CPAP, two CNP, one nasal CPAP and one both CNP (for less ill babies) and endotracheal CPAP (for sicker babies). For this update, we included no new trials.Continuous distending pressure (CDP) is associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.65, 95% confidence interval (CI) 0.52 to 0.81; typical risk difference (RD) -0.20, 95% CI -0.29 to -0.10; number needed to treat for an additional beneficial outcome (NNTB) 5, 95% CI 4 to 10; six studies; 355 infants), lower overall mortality (typical RR 0.52, 95% CI 0.32 to 0.87; typical RD -0.15, 95% CI -0.26 to -0.04; NNTB 7, 95% CI 4 to 25; six studies; 355 infants) and lower mortality in infants with birth weight above 1500 g (typical RR 0.24, 95% CI 0.07 to 0.84; typical RD -0.28, 95% CI -0.48 to -0.08; NNTB 4, 95% CI 2.00 to 13.00; two studies; 60 infants). Use of CDP is associated with increased risk of pneumothorax (typical RR 2.64, 95% CI 1.39 to 5.04; typical RD 0.10, 95% CI 0.04 to 0.17; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 17.00 to 25.00; six studies; 355 infants). We found no difference in bronchopulmonary dysplasia (BPD), defined as oxygen dependency at 28 days (three studies, 260 infants), as well as no difference in outcome at nine to 14 years (one study, 37 infants).

    AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CDP as CPAP or CNP is associated with reduced respiratory failure and mortality and an increased rate of pneumothorax. Four out of six of these trials were done in the 1970s. Therefore, the applicability of these results to current practice is difficult to assess. Further research is required to determine the best mode of administration.

    Matched MeSH terms: Pulmonary Surfactants/therapeutic use
  10. Lim, W.L., Lim, C.T., Chye, J.K., Ho, M.M.
    MyJurnal
    The objective of this study was to examine the effect of surfactant replacement therapy on hospital resource uti-lization in a well defined cohort of preterm infants with respiratory distress syndrome (RDS). Thirty preterm infants 800g with RDS requiring mechanical ventila-tion with Fi02 of 0.4 given modified bovine surfactant (Survanta) were compared with an equal number of his-torical controls. The total cost of neonatal care was cal-culated in a detailed survey covering all aspects of resource use. Surfactant-treated infants had an improved survival rate (90.0% vs 66.7%, p=0.03) and a trend towards shorter ventilator days (11.8 vs 19.0 days, p=0.17). There were no significant differences in the number of laboratory and radiological investiga-tions, use of disposable items, equipment, medications and other therapies. The total hospital cost per livebirth for surfactant-treated and control infants were R/V120,281 and R1V121,785 respectively. Personnel salaries represented the largest sector of resource uti-lization. When analysed by birthweight categories, the cost per livebirth for surfactant-treated and control infants in the 800-999g category were RM37,315 and RM14,760 respectively. As for the surfactant-treated and control infants in the 1000-1499g category, the cost per livebirth were RM21,426 and RM32,327 respectively. We concluded that surfactant replacement therapy did not increase overall hospital resource uti-lization and may decrease the cost for infants weighing 1000g.
    Matched MeSH terms: Pulmonary Surfactants
  11. Botelho D, Leo BF, Massa C, Sarkar S, Tetley T, Chung KF, et al.
    Front Pharmacol, 2018;9:213.
    PMID: 29632485 DOI: 10.3389/fphar.2018.00213
    Here we examine the organ level toxicology of both carbon black (CB) and silver nanoparticles (AgNP). We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF). C57Bl6/J male mice were intratracheally instilled with saline (control), low (0.05 μg/g) or high (0.5 μg/g) doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D) content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.
    Matched MeSH terms: Pulmonary Surfactants
  12. Lim NL, Nordin MM, Cheah IG
    Med J Malaysia, 1994 Mar;49(1):4-11.
    PMID: 8057989
    An open prospective descriptive pilot study was undertaken to assess the effectiveness and experience in the use of ExosurfNeonatal, a synthetic surfactant, on preterm infants with respiratory distress syndrome in the neonatal intensive care unit of the Paediatric Institute. Of 10 infants treated, seven (70%) survived with no major handicap on discharge. The mean duration of ventilation for these survivors was 6.4 days, mean duration of oxygen therapy 9.1 days and mean length of hospital stay 38.3 days. A comparison was made with a retrospective analysis of 15 neonates who were admitted during an eight month period prior to the pilot study. These infants were mechanically ventilated for respiratory distress syndrome but not given surfactant therapy. Of these, nine (60%) survived (P > 0.1 compared to Exosurf treated infants), but two developed post haemorrhagic hydrocephalus requiring shunting. For these nine survivors, the mean duration of ventilator therapy was 12.6 days, the mean duration of oxygen therapy 20.7 days and the mean length of hospital stay 70.8 days. This difference was statistically significant (P < 0.05). Of the three ExosurfNeonatal treated infants who died, two were extremely premature. Both developed grade IV periventricular haemorrhage while the third infant was admitted in shock and hypothermia and died from intraventricular haemorrhage and pulmonary interstitial emphysema. Except for the very sick and extremely premature infants, surfactant therapy is useful in reducing the mortality and morbidity of premature infants with respiratory distress syndrome in our neonatal intensive unit.
    Matched MeSH terms: Pulmonary Surfactants/therapeutic use*
  13. Chye JK, Lim CT
    Singapore Med J, 1999 Sep;40(9):565-70.
    PMID: 10628243
    To determine the survival rates and risk factors associated with mortality in premature very low birth weight or VLBW (< or = 1500 grams) infants.
    Matched MeSH terms: Pulmonary Surfactants/therapeutic use
  14. Ho JJ, Subramaniam P, Davis PG
    Cochrane Database Syst Rev, 2020 10 15;10:CD002271.
    PMID: 33058208 DOI: 10.1002/14651858.CD002271.pub3
    BACKGROUND: Respiratory distress, particularly respiratory distress syndrome (RDS), is the single most important cause of morbidity and mortality in preterm infants. In infants with progressive respiratory insufficiency, intermittent positive pressure ventilation (IPPV) with surfactant has been the usual treatment, but it is invasive, potentially resulting in airway and lung injury. Continuous positive airway pressure (CPAP) has been used for the prevention and treatment of respiratory distress, as well as for the prevention of apnoea, and in weaning from IPPV. Its use in the treatment of RDS might reduce the need for IPPV and its sequelae.

    OBJECTIVES: To determine the effect of continuous distending pressure in the form of CPAP on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.

    SEARCH METHODS: We used the standard strategy of Cochrane Neonatal to search CENTRAL (2020, Issue 6); Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions; and CINAHL on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.

    SELECTION CRITERIA: All randomised or quasi-randomised trials of preterm infants with respiratory distress were eligible. Interventions were CPAP by mask, nasal prong, nasopharyngeal tube or endotracheal tube, compared with spontaneous breathing with supplemental oxygen as necessary.

    DATA COLLECTION AND ANALYSIS: We used standard methods of Cochrane and its Neonatal Review Group, including independent assessment of risk of bias and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence. Subgroup analyses were planned on the basis of birth weight (greater than or less than 1000 g or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), timing of application (early versus late in the course of respiratory distress), pressure applied (high versus low) and trial setting (tertiary compared with non-tertiary hospitals; high income compared with low income) MAIN RESULTS: We included five studies involving 322 infants; two studies used face mask CPAP, two studies used nasal CPAP and one study used endotracheal CPAP and continuing negative pressure for a small number of less ill babies. For this update, we included one new trial. CPAP was associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.64, 95% confidence interval (CI) 0.50 to 0.82; typical risk difference (RD) -0.19, 95% CI -0.28 to -0.09; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 4 to 11; I2 = 50%; 5 studies, 322 infants; very low-certainty evidence), lower use of ventilatory assistance (typical RR 0.72, 95% CI 0.54 to 0.96; typical RD -0.13, 95% CI -0.25 to -0.02; NNTB 8, 95% CI 4 to 50; I2 = 55%; very low-certainty evidence) and lower overall mortality (typical RR 0.53, 95% CI 0.34 to 0.83; typical RD -0.11, 95% CI -0.18 to -0.04; NNTB 9, 95% CI 2 to 13; I2 = 0%; 5 studies, 322 infants; moderate-certainty evidence). CPAP was associated with increased risk of pneumothorax (typical RR 2.48, 95% CI 1.16 to 5.30; typical RD 0.09, 95% CI 0.02 to 0.16; number needed to treat for an additional harmful outcome (NNTH) 11, 95% CI 7 to 50; I2 = 0%; 4 studies, 274 infants; low-certainty evidence). There was no evidence of a difference in bronchopulmonary dysplasia, defined as oxygen dependency at 28 days (RR 1.04, 95% CI 0.35 to 3.13; I2 = 0%; 2 studies, 209 infants; very low-certainty evidence). The trials did not report use of surfactant, intraventricular haemorrhage, retinopathy of prematurity, necrotising enterocolitis and neurodevelopment outcomes in childhood.

    AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CPAP is associated with reduced respiratory failure, use of mechanical ventilation and mortality and an increased rate of pneumothorax compared to spontaneous breathing with supplemental oxygen as necessary. Three out of five of these trials were conducted in the 1970s. Therefore, the applicability of these results to current practice is unclear. Further studies in resource-poor settings should be considered and research to determine the most appropriate pressure level needs to be considered.

    Matched MeSH terms: Pulmonary Surfactants/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links