Displaying publications 21 - 40 of 190 in total

Abstract:
Sort:
  1. Tabatabaee Amid B, Mirhosseini H
    Colloids Surf B Biointerfaces, 2014 Jan 1;113:107-14.
    PMID: 24060935 DOI: 10.1016/j.colsurfb.2013.08.042
    The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process.
    Matched MeSH terms: Seeds/chemistry*
  2. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Seeds/chemistry*
  3. Soleimany F, Jinap S, Rahmani A, Khatib A
    PMID: 21337232 DOI: 10.1080/19440049.2010.551547
    A new method for the simultaneous quantification of 12 mycotoxins was developed and optimized using reverse phase high performance liquid chromatography (RP-HPLC) with a photodiode array (PDA) and fluorescence detector (FLD), a photochemical reactor for enhanced detection (PHRED) and post-column derivatization. The mycotoxins included aflatoxins (AFB(1), AFB(2), AFG(1), and AFG(2)), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB(1), FB(2), and FB(3)), T-2 and HT-2 toxins. A double sample extraction with a phosphate-buffered saline solution (PBS) and methanol was used for co-extraction of mycotoxins, and a multifunctional immunoaffinity column was used for cleanup. Optimum conditions for separation of the mycotoxins were obtained to separate 12 mycotoxins in FLD and PDA chromatograms with a high resolution. The method gave recoveries in the range 72-111% when applied to spiked corn samples. The limits of detection (LOD) were 0.025 ng/g for AFB(1) and AFG(1), 0.012 ng/g for AFB(2) and AFG(2), 0.2 ng/g for OTA, 1.5 ng/g for ZEA, 6.2 ng/g for FB(1), FB(3) and HT-2 toxin, 9.4 ng/g for FB(2) and T-2 toxin, and 18.7 ng/g for DON. In addition, the limits of quantification (LOQ) ranged from 0.04 ng/g for AFB(2) and AFG(2) to 62 ng/g for DON. The method was successfully applied to the determination of these mycotoxins in 45 cereal samples obtained from the Malaysian market. The results indicated that the method can be applied for the multi-mycotoxin determination of cereals.
    Matched MeSH terms: Seeds/chemistry
  4. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Seeds/chemistry
  5. Siwayanan P, Chin LZ, Parthiban A, Ayodele OB, Hong BZ
    J Oleo Sci, 2024;73(4):479-487.
    PMID: 38556282 DOI: 10.5650/jos.ess23121
    Global demand for epoxidized vegetable oil has been steadily growing. Epoxidized vegetable oils are typically produced using a two-pot synthesis process in which the oxidation and epoxidation reactions are carried out sequentially. This two-pot synthesis method, however, has a major drawback in industrialscale production, particularly when it comes to operational and process safety issues. A laboratory-scale one-pot synthesis method was attempted in this study with the aim to safely synthesize epoxidized Moringa Oleifera oil (eMOo) by avoiding the occurrence of undesired exothermic runaway reaction. The oil extracted from Moringa Oleifera oil seed kernel (MOo) was used as a starting component due to its high degree of unsaturation and also because the Moringa Oleifera plant can be freely grown in any soil conditions. Two parallel oxidation and epoxidation reactions were carried out simultaneously in this one-pot synthesis method to produce eMOo. The effect of five different mole ratios of MOo, acetic acid and hydrogen peroxide (1:1:1, 1:1:2, 1:1.5:2, 1:1.75:2 and 1:2:2, respectively) on reaction mechanism was investigated at the controlled temperature range of 43 - 55°C and reaction time of 0 - 120 min. The physicochemical properties of MOo as well as the oxirane oxygen content (OOC) of the resulting eMOo were characterized. In addition, GC-MS and FTIR analysis were performed to verify the molecular composition of MOo and also to identify the epoxy group of the resulting eMOo respectively. Among the five different mole ratios studied, the 1:1.5:2 mole ratio has the highest unsaturation conversion of 79.57% and OOC of 4.12%.
    Matched MeSH terms: Seeds/chemistry
  6. Siow HL, Gan CY
    Food Chem, 2013 Dec 15;141(4):3435-42.
    PMID: 23993504 DOI: 10.1016/j.foodchem.2013.06.030
    Antioxidative and antihypertensive bioactive peptides were successfully derived from Parkia speciosa seed using alcalase. The effects of temperature (25 and 50 °C), substrate-to-enzyme ratio (S/E ratio, 20 and 50), and incubation time (0.5, 1, 2 and 5h) were evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and angiotensin-converting enzyme (ACE) assays. Bioactive peptide extracted at a hydrolysis condition of: temperature=50 °C, S/E ratio=50 and incubation time=2h, exhibited the highest DPPH radical scavenging activity (2.9 mg GAE/g), reducing power (11.7 mM) and %ACE-inhibitory activity (80.2%). The sample was subsequently subjected to fractionation and the peptide fraction of <10 kDa showed the strongest bioactivities. A total of 29 peptide sequences from peptide fraction of <10 kDa were identified as the most potent contributors to the bioactivities. These novel bioactive peptides were suggested to be beneficial to nutraceutical and food industries.
    Matched MeSH terms: Seeds/chemistry*
  7. Shukri R, Mohamed S, Mustapha NM, Hamid AA
    J Sci Food Agric, 2011 Nov;91(14):2697-706.
    PMID: 21744354 DOI: 10.1002/jsfa.4516
    Jering (Archidendron jiringa) is eaten in the tropics and traditionally extolled for treating diabetes, high blood pressure and eliminating bladder stones. Jering contains an unusual amino acid-djenkolic acid (S,S'-methylenebiscysteine)-which may form sharp crystals in the urinary tract, causing pain and haematuria. This study evaluates the beneficial and toxic effects of dietary jering on tissues and organs in normal and diabetic rats.
    Matched MeSH terms: Seeds/chemistry
  8. Shuit SH, Lee KT, Kamaruddin AH, Yusup S
    Environ Sci Technol, 2010 Jun 1;44(11):4361-7.
    PMID: 20455588 DOI: 10.1021/es902608v
    Biodiesel from Jatropha curcas L. seed is conventionally produced via a two-step method: extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME), commonly known as biodiesel. Contrarily, in this study, a single step in situ extraction, esterification and transesterification (collectively known as reactive extraction) of J. curcas L. seed to biodiesel, was investigated and optimized. Design of experiments (DOE) was used to study the effect of various process parameters on the yield of FAME. The process parameters studied include reaction temperature (30-60 degrees C), methanol to seed ratio (5-20 mL/g), catalyst loading (5-30 wt %), and reaction time (1-24 h). The optimum reaction condition was then obtained by using response surface methodology (RSM) coupled with central composite design (CCD). Results showed that an optimum biodiesel yield of 98.1% can be obtained under the following reaction conditions: reaction temperature of 60 degrees C, methanol to seed ratio of 10.5 mL/g, 21.8 wt % of H(2)SO(4), and reaction period of 10 h.
    Matched MeSH terms: Seeds/chemistry*
  9. Shammugasamy B, Ramakrishnan Y, Ghazali HM, Muhammad K
    J Sci Food Agric, 2015 Mar 15;95(4):672-8.
    PMID: 24841131 DOI: 10.1002/jsfa.6742
    The present study examined the contents of tocopherols and tocotrienols and their distribution in 58 different varieties of whole rice cultivated in Malaysia. The analytical method used was saponification of samples followed by dispersive liquid-liquid microextraction and reverse phase high-performance liquid chromatography.
    Matched MeSH terms: Seeds/chemistry*
  10. Shahmohammadi HR, Bakar J, Rahman RA, Adzhan NM
    J Food Sci, 2014 Feb;79(2):E178-83.
    PMID: 24410375 DOI: 10.1111/1750-3841.12324
    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number.
    Matched MeSH terms: Seeds/chemistry*
  11. Sapaat A, Satrija F, Mahsol HH, Ahmad AH
    Trop Biomed, 2012 Dec;29(4):508-12.
    PMID: 23202594
    The purpose of this study is to see the anthelmintic activity potential of papaya seeds against Hymenolepis diminuta in rats. The objectives of this study were: (1) to determine the effectiveness of papaya seeds on helminths especially H. diminuta in rats and (2) to determine the effective dose level on helminths in rats. Thirty six male rats from strain Sprague-Dawley were chosen as samples in this experiment. Two types of dose level were used for papaya seeds treatments such as 0.6 g kg-1 and 1.2 g kg-1. The geometric mean (GEM) was used to calculate mean for eggs per gram (EPG) before and after the treatment to be included in the reduction percentage calculation. After 21 days post treatment, necropsies were done to get the worm count and the GEM was used to calculate the efficacy percentage for the treatment. Results from this study showed that the reduction percentages in EPG for papaya seeds treatment for both doses level were very high which is 96.8% for 0.6g kg-1 dose level and 96.2% for 1.2 g kg-1 dose level. Whereas the efficacy percentage based on the worm counts for both doses level were also very high that was 90.77% for 0.6 g kg-1 dose level and 93.85% for 1.2 g kg-1.
    Matched MeSH terms: Seeds/chemistry
  12. Santos GP, Miranda BM, Di-Medeiros MCB, Almeida VO, Ferreira RD, Morais DAB, et al.
    Carbohydr Res, 2024 Jan;535:109008.
    PMID: 38103463 DOI: 10.1016/j.carres.2023.109008
    This work presents the characterization of a novel naturally phosphorylated starch extracted from an unconventional and non-utilized source, the seeds of the stone fruit Syzygium malaccense. The morphology and chemical characteristics of the extracted starch were examined by scanning electron microscopy, FTIR, 1H/13C/31P NMR and 13C-CP/MAS-NMR, HPAEC-PAD chromatography, XRD, DSC, and RVA. The extraction yielded a highly pure starch (95.6 %) with an average granule size of 13 μm. The analysis of the starch components revealed an amylose content of 28.1 % and a predominance (65 %) of B-chains (B1-B3 65 %) in the amylopectin, as shown through HPAEC-PAD chromatography. The X-ray diffractogram was compatible with B-type starch, which was confirmed by the deconvolution of the C1 peak in the 13C-CP/MAS-NMR. X-Ray diffractogram also showed that S. malaccense has 28.5 % of crystallinity. DSC analysis showed values of 82.6 °C and -12.41 J g-1 for Tc and ΔH, respectively, which is compatible with a highly ordered starch granule structure. The values observed for peak (4678 mPa•s), trough (3055 mPa•s), and final viscosity (6526 mPa•s) indicated that S. malaccense may be used as a thickener in hot food.
    Matched MeSH terms: Seeds/chemistry
  13. Samaram S, Mirhosseini H, Tan CP, Ghazali HM, Bordbar S, Serjouie A
    Food Chem, 2015 Apr 1;172:7-17.
    PMID: 25442517 DOI: 10.1016/j.foodchem.2014.08.068
    The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) condition on the yield, antioxidant activity and stability of the oil from papaya seed. The studied ultrasound variables were time, temperature, ultrasound power and solvent to sample ratio. The main goal was to optimise UAE condition providing the highest recovery of papaya seed oil with the most desirable antioxidant activity and stability. The interaction of ultrasound variables had the most and least significant effects on the antioxidant activity and stability, respectively. Ultrasound-assisted extraction provided a relatively high oil recovery (∼ 73%) from papaya seed. The strongest antioxidant activity was achieved by the extraction at the elevated temperature using low solvent to sample ratio. The optimum ultrasound extraction was set at the elevated temperature (62.5 °C) for 38.5 min at high ultrasound power (700 W) using medium solvent to sample ratio (∼ 7:1 v/w). The optimum point was practically validated.
    Matched MeSH terms: Seeds/chemistry*
  14. Samaram S, Mirhosseini H, Tan CP, Ghazali HM
    Molecules, 2013 Oct 10;18(10):12474-87.
    PMID: 24152670 DOI: 10.3390/molecules181012474
    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
    Matched MeSH terms: Seeds/chemistry*
  15. Salimon J, Abdullah BM, Salih N
    Lipids Health Dis, 2012;11:74.
    PMID: 22694753 DOI: 10.1186/1476-511X-11-74
    The lipid fraction of rubber (Hevea brasiliensis (kunth. Muell)) seed was extracted and analyzed for toxicological effect. The toxicological compound such as linamarin in rubber seed oil (RSO) extracted using different solvents, such as hexane (RSOh), mixture of chloroform + methanol (RSOchl+mth) and ethanol (RSOeth) were also studied. Various methods analysis such as Fourier transforms infrared spectroscopy (FTIR) and colorimetric methods were carried out to determine the present of such compounds.
    Matched MeSH terms: Seeds/chemistry*
  16. Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM
    Phytother Res, 2013 Oct;27(10):1439-56.
    PMID: 23281145 DOI: 10.1002/ptr.4897
    Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti-microbial, anti-oxidant, anti-diabetic, anxiolytic, anti-epileptic, anti-depressant, anti-mutagenic, anti-inflammatory, anti-dyslipidemic, anti-hypertensive, neuro-protective and diuretic. Interestingly, coriander also possessed lead-detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry.
    Matched MeSH terms: Seeds/chemistry
  17. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2011 Apr;28(1):132-7.
    PMID: 21602779 MyJurnal
    Swietenia mahogani crude methanolic (SMCM) seed extract was investigated for the antifungal activity against Candida albicans which has not been evaluated previously. The antifungal activity was evaluated against C. albicans via disk diffusion, minimum inhibition concentration (MIC), scanning electron microscope (SEM), transmission electron microscope (TEM) and time killing profile. The MIC value of SMCM seed extract is 12.5 mg/ml. The SEM and TEM findings showed there is morphological changes and cytological destruction of C. albicans at the MIC value. Animal model was used to evaluate the in vivo antifungal activity of SMCM seed extract. The colony forming unit (CFU) were calculated per gram of kidney sample and per ml of blood sample respectively for control, curative and ketaconazole treated groups. There was significant reduction for the CFU/ml of blood and CFU/g of kidney. This indicated that the extract was observed to be effective against C. albicans in vitro and in vivo conditions.
    Matched MeSH terms: Seeds/chemistry*
  18. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2009 Dec;26(3):274-9.
    PMID: 20237441 MyJurnal
    The present study was designed to evaluate the antibacterial activities of Swietenia mahagoni crude methanolic (SMCM) seed extract. The antimicrobial activity of the oily extract against Gram-positive, Gram-negative, yeast and fungus strains was evaluated based on the inhibition zone using disc diffusion assay, minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values. The crude extract was subjected to various phytochemicals analysis. The demonstrated qualitative phytochemical tests exhibited the presences of common phytocompounds including alkaloids, terpenoids, antraquinones, cardiac glycosides, saponins, and volatile oils as major active constituents. The SMCM seed extract had inhibitory effects on the growth of Candida albicans, Staphylococcus aureus, Pseudomonas aeroginosa, Streptococcus faecalis and Proteus mirabillase and illustrated MIC and MBC values ranging from 25 mg/ml to 50 mg/ml.
    Matched MeSH terms: Seeds/chemistry
  19. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Molecules, 2009 Nov 06;14(11):4476-85.
    PMID: 19924080 DOI: 10.3390/molecules14114476
    This study examines the in vitro antioxidant activities of the methanol extract of Swietenia mahagoni seeds (SMCM seed extract). The extract was screened for possible antioxidant activities by free radical scavenging activity (DPPH), xanthine oxidase inhibition (XOI), hydrogen peroxide scavenging activity (HPSA) and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents were also determined. The extract exhibits antioxidant activity of 23.29% with an IC(50 )value of 2.3 mg/mL in the DPPH radical scavenging method, 47.2% in the XOI assay, 49.5% by the HPSA method, and 0.728 mmol/Fe(II)g in the FRAP method at the concentration tested. The amount of total phenolics and flavonoid contents was 70.83 mg gallic acid equivalent (GAE) and 2.5 +/- 0.15 mg of catechin equivalent per gram of dry extract, respectively. High Performance Thin Layer Chromatography (HPTLC) screening indicates the presence of phenolic compounds in the SMCM seed extract. The results indicate that the extract has both high free radical scavenging and xanthine oxidase inhibition activity. The antioxidant activity of SMCM seed extract is comparable with that of other Malaysian tropical fruits and herbal plants.
    Matched MeSH terms: Seeds/chemistry*
  20. Rohman A, Ariani R
    ScientificWorldJournal, 2013;2013:740142.
    PMID: 24319381 DOI: 10.1155/2013/740142
    Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977-3028, 1666-1739, and 740-1446 cm(-1) revealed the highest value of coefficient of determination (R (2), 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985-3024 and 752-1755 cm(-1) using the first derivative FTIR spectra with R (2) and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977-3028 cm(-1), 1666-1739 cm(-1), and 740-1446 cm(-1) were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R (2) and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.
    Matched MeSH terms: Seeds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links