Displaying publications 21 - 40 of 862 in total

Abstract:
Sort:
  1. Zaw MT, Emran NA, Lin Z
    J Microbiol Immunol Infect, 2018 Apr;51(2):159-165.
    PMID: 28711439 DOI: 10.1016/j.jmii.2017.06.009
    BACKGROUND: In the fight against malaria caused by Plasmodium falciparum, the successes achieved by artemisinin were endangered by resistance of the parasites to the drug. Whole genome sequencing approach on artemisinin resistant parasite line discovered k13 gene associated with drug resistance. In vitro and in vivo studies indicated mutations in the k13 gene were linked to the artemisinin resistance.

    METHODOLOGY: The literatures published after April, 2015 up to December, 2016 on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum and relevant literatures were comprehensively reviewed.

    RESULTS: To date, 13 non-synonymous mutations of k13 gene have been observed to have slow parasite clearance. Worldwide mapping of k13 mutant alleles have shown mutants associated with artemisinin resistance were confined to southeast Asia and China and did not invade to African countries. Although in vitro ring stage survival assay of 0-3 h was a recently developed assay, it was useful for rapid detection of artemisinin resistance associated k13 allelic marker in the parasite. Recently, dissemination of k13 mutant alleles was recommended to be investigated by identity of haplotypes. Significant characteristics of well described alleles in the reports were mentioned in this review for the benefit of future studies.

    CONCLUSION: According to the updates in the review, it can be concluded artemisinin resistance does not disseminate to India and African countries within short period whereas regular tracking of these mutants is necessary.

    Matched MeSH terms: Sequence Analysis, DNA
  2. Matsui M, Kuraishi N, Eto K, Hamidy A, Nishikawa K, Shimada T, et al.
    Mol Phylogenet Evol, 2016 09;102:305-19.
    PMID: 27374495 DOI: 10.1016/j.ympev.2016.06.009
    A fanged frog Limnonectes kuhlii was once thought to be wide-ranging in Southeast Asia, but is now confined to its type locality Java through recent phylogenetic studies, which clarified heterospecific status of non-Javanese populations, and monophyly of Bornean populations. However, large genetic differences among Bornean populations suggest occurrence of cryptic species, which we test using dense geographic sampling. We estimated the phylogenetic relationships among samples of Bornean populations together with their putative relatives from the continental Southeast Asia, using 2517bp sequences of the 12S rRNA, tRNA(val), and 16S rRNA of mitochondrial DNA, and 2367bp sequences of the NCX1, POMC, and RAG1 of nuclear genes. In the mtDNA trees, Bornean L. kuhlii-like frogs formed a monophyletic group split into 18 species lineages including L. hikidai, with the deepest phylogenetic split separating L. cintalubang from the remaining species. Almost all of these lineages co-occur geographically, and two to three lineages were found syntopically in each locality. Co-occurrence of more than one lineage may be maintained by differential morphology and microhabitat selection. These syntopic lineages should be regarded as distinct species. Our results clearly indicate that taxonomic revision is urgent to clarify many evolutionary problems of Bornean L. kuhlii-like frogs.
    Matched MeSH terms: Sequence Analysis, DNA
  3. Chook JB, Teo WL, Ngeow YF, Tee KK, Ng KP, Mohamed R
    J Clin Microbiol, 2015 Jun;53(6):1831-5.
    PMID: 25788548 DOI: 10.1128/JCM.03449-14
    Hepatitis B virus (HBV) has been divided into 10 genotypes, A to J, based on an 8% nucleotide sequence divergence between genotypes. The conventional practice of using a single set of primers to amplify a near-complete HBV genome is hampered by its low analytical sensitivity. The current practice of using overlapping conserved primer sets to amplify a complete HBV genome in a clinical sample is limited by the lack of pan-primers to detect all HBV genotypes. In this study, we designed six highly conserved, overlapping primer sets to cover the complete HBV genome. We based our design on the sequences of 5,154 HBV genomes of genotypes A to I downloaded from the GenBank nucleotide database. These primer sets were tested on 126 plasma samples from Malaysia, containing genotypes A to D and with viral loads ranging from 20 to >79,780,000 IU/ml. The overall success rates for PCR amplification and sequencing were >96% and >94%, respectively. Similarly, there was 100% amplification and sequencing success when the primer sets were tested on an HBV reference panel of genotypes A to G. Thus, we have established primer sets that gave a high analytical sensitivity for PCR-based detection of HBV and a high rate of sequencing success for HBV genomes in most of the viral genotypes, if not all, without prior known sequence data for the particular genotype/genome.
    Matched MeSH terms: Sequence Analysis, DNA/methods*
  4. Sukantamala J, Sing KW, Jaturas N, Polseela R, Wilson JJ
    PMID: 27759464 DOI: 10.1080/24701394.2016.1214728
    Certain species of Phlebotomine sandflies (Diptera: Psychodidae) are vectors of the protozoa which causes leishmaniasis. Sandflies are found breeding in enclosed places like caves. Thailand is a popular tourist destination, including for ecotourism activities like caving, which increases the risk of contact between tourists and sandflies. Surveillance of sandflies is important for monitoring this risk but identification of species based on morphology is challenged by phenotypic plasticity and cryptic diversity. DNA barcodes have been used for the identification of sandflies in Thailand. We collected sandflies using CDC light trap from four tourist caves in Northern Thailand. Female sandflies were provisionally sorted into 13 morphospecies and 19 unidentified specimens. DNA was extracted from the thorax and legs of sandflies and the DNA barcode region of cytochrome c oxidase I mtDNA amplified and sequenced. The specimens were sorted into 22 molecular operational taxonomic units (MOTU) based on the 145 DNA barcodes, which is significantly more than the morphospecies. Several of the taxa thought to be present in multiple caves, based on morphospecies sorting, split into cave-specific MOTU which likely represent cryptic species. Several MOTU reported in an earlier study from Wihan Cave, Thailand, were also found in these caves. This supports the use of DNA barcodes to investigate species diversity of sandflies and their useful role in surveillance of sandflies in Thailand.
    Matched MeSH terms: Sequence Analysis, DNA
  5. Kobayashi N, Thayan R, Sugimoto C, Oda K, Saat Z, Vijayamalar B, et al.
    Am J Trop Med Hyg, 1999 Jun;60(6):904-9.
    PMID: 10403318
    To characterize the dengue epidemic that recently occurred in Malaysia, we sequenced cDNAs from nine 1993-1994 dengue virus type-3 (DEN-3) isolates in Malaysia (DEN-3 was the most common type in Malaysia during this period). Nucleic acid sequences (720 nucleotides in length) from the nine isolates, encompassing the precursor of membrane protein (preM) and membrane (M) protein genes and part of the envelope (E) protein gene were aligned with various reference DEN-3 sequences to generate a neighbor-joining phylogenetic tree. According to the constructed tree, the nine Malaysian isolates were grouped into subtype II, which comprises Thai isolates from 1962 to 1987. Five earlier DEN-3 virus Malaysian isolates from 1974 to 1981 belonged to subtype I. The present data indicate that the recent dengue epidemic in Malaysia was due to the introduction of DEN-3 viruses previously endemic to Thailand.
    Matched MeSH terms: Sequence Analysis, DNA
  6. Zaw MT, Lin Z
    J Microbiol Immunol Infect, 2017 Oct;50(5):559-564.
    PMID: 28065415 DOI: 10.1016/j.jmii.2016.08.004
    Plasmodium ovale is widely distributed in tropical countries, whereas it has not been reported in the Americas. It is not a problem globally because it is rarely detected by microscopy owing to low parasite density, which is a feature of clinical ovale malaria. P.o. curtisi and P.o. wallikeri are widespread in both Africa and Asia, and were known to be sympatric in many African countries and in southeast Asian countries. Small subunit ribosomal RNA (SSUrRNA) gene, cytochrome b (cytb) gene, and merozoite surface protein-1 (msp-1) gene were initially studied for molecular discrimination of P.o. curtisi and P.o. wallikeri using polymerase chain reaction (PCR) and DNA sequencing. DNA sequences of other genes from P. ovale in Southeast Asia and the southwestern Pacific regions were also targeted to differentiate the two sympatric types. In terms of clinical manifestations, P.o. wallikeri tended to produce higher parasitemia levels and more severe symptoms. To date, there have been a few studies that used the quantitative PCR method for discrimination of the two distinct P. ovale types. Conventional PCR with consequent DNA sequencing is the common method used to differentiate these two types. It is necessary to identify these two types because relapse periodicity, drug susceptibility, and mosquito species preference need to be studied to reduce ovale malaria. In this article, an easier method of molecular-level discrimination of P.o. curtisi and P.o. wallikeri is proposed.
    Matched MeSH terms: Sequence Analysis, DNA
  7. Gan HM, Linton SM, Austin CM
    Mar Genomics, 2019 Jun;45:64-71.
    PMID: 30928201 DOI: 10.1016/j.margen.2019.02.002
    Despite recent advances in sequencing technology, a complete mitogenome assembly is still unavailable for the gecarcinid land crabs that include the iconic Christmas Island red crab (Gecarcoidea natalis) which is known for its high population density, annual mass breeding migration and ecological significance in maintaining rainforest structure. Using sequences generated from Nanopore and Illumina platforms, we assembled the complete mitogenome for G. natalis, the first for the genus and only second for the family Gecarcinidae. Nine Nanopore long reads representing 0.15% of the sequencing output from an overnight MinION Nanopore run were aligned to the mitogenome. Two of them were >10 kb and combined are sufficient to span the entire G. natalis mitogenome. The use of Illumina genome skimming data only resulted in a fragmented assembly that can be attributed to low to zero sequencing coverage in multiple high AT-regions including the mitochondrial protein-coding genes (NAD4 and NAD5), 16S ribosomal rRNA and non-coding control region. Supplementing the mitogenome assembly with previously acquired transcriptome dataset containing high abundance of mitochondrial transcripts improved mitogenome sequence coverage and assembly reliability. We then inferred the phylogeny of the Eubrachyura using Maximum Likelihood and Bayesian approaches, confirming the phylogenetic placement of G. natalis within the family Gecarcinidae based on whole mitogenome alignment. Given the substantial impact of AT-content on mitogenome assembly and the value of complete mitogenomes in phylogenetic and comparative studies, we recommend that future mitogenome sequencing projects consider generating a modest amount of Nanopore long reads to facilitate the closing of problematic and fragmented mitogenome assemblies.
    Matched MeSH terms: Sequence Analysis, DNA
  8. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Sequence Analysis, DNA/methods
  9. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG, Faure D
    Int J Syst Evol Microbiol, 2019 Feb;69(2):470-475.
    PMID: 30601112 DOI: 10.1099/ijsem.0.003180
    Pectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA-DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacteriumfontis sp. nov.
    Matched MeSH terms: Sequence Analysis, DNA
  10. Kwasiborski A, Mondy S, Chong TM, Barbey C, Chan KG, Beury-Cirou A, et al.
    Heredity (Edinb), 2015 May;114(5):476-84.
    PMID: 25585922 DOI: 10.1038/hdy.2014.121
    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase-PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum.
    Matched MeSH terms: Sequence Analysis, DNA
  11. Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S
    BMC Genomics, 2010;11:76.
    PMID: 20113487 DOI: 10.1186/1471-2164-11-76
    Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins.
    Matched MeSH terms: Sequence Analysis, DNA
  12. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
    Matched MeSH terms: Sequence Analysis, DNA
  13. Polseela R, Jaturas N, Thanwisai A, Sing KW, Wilson JJ
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 09;27(5):3795-801.
    PMID: 26370580 DOI: 10.3109/19401736.2015.1082085
    Sandflies vary in their distributions and role in pathogen transmission. Attempts to record distributions of sandflies in Thailand have faced difficulties due to their high abundance and diversity. We aim to provide an insight into the diversity of sandflies in Thailand by (i) conducting a literature review, and (ii) DNA barcoding sandflies collected from Wihan Cave where eight morphologically characterized species were recorded. DNA barcodes generated for 193 sandflies fell into 13 distinct species clusters under four genera (Chinius, Idiophlebotomus, Phlebotomus and Sergentomyia). Five of these species could be assigned Linnaean species names unambiguously and two others corresponded to characterized morphospecies. Two species represented a complex under the name Sergentomyia barraudi while the remaining four had not been recognized before in any form. The resulting species checklist and DNA barcode library contribute to a growing set of records for sandflies which is useful for monitoring and vector control.
    Matched MeSH terms: Sequence Analysis, DNA
  14. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
    Matched MeSH terms: Sequence Analysis, DNA
  15. Zheng Y, Fu J, Li S
    Mol Phylogenet Evol, 2009 Jul;52(1):70-83.
    PMID: 19348953 DOI: 10.1016/j.ympev.2009.03.026
    Several anuran groups of Laurasian origin are each co-distributed in four isolated regions of the Northern Hemisphere: central/southern Europe and adjacent areas, Korean Peninsula and adjacent areas, Indo-Malaya, and southern North America. Similar distribution patterns have been observed in diverse animal and plant groups. Savage [Savage, J.M., 1973. The geographic distribution of frogs: patterns and predictions. In: Vial, J.L. (Ed.), Evolutionary Biology of the Anurans. University of Missouri Press, Columbia, pp. 351-445] hypothesized that the Miocene global cooling and increasing aridities in interiors of Eurasia and North America caused a southward displacement and range contraction of Laurasian frogs (and other groups). We use the frog genus Bombina to test Savage's biogeographical hypothesis. A phylogeny of Bombina is reconstructed based on three mitochondrial and two nuclear gene fragments. The genus is divided into three major clades: an Indo-Malaya clade includes B. fortinuptialis, B. lichuanensis, B. maxima, and B. microdeladigitora; a European clade includes B. bombina, B. pachypus, and B. variegata; and a Korean clade contains B. orientalis. The European and Korean clades form sister-group relationship. Molecular dating of the phylogenetic tree using the penalized likelihood and Bayesian analyses suggests that the divergence between the Indo-Malaya clade and other Bombina species occurred 5.9-28.6 million years ago. The split time between the European clade and the Korean clade is estimated at 5.1-20.9 million years ago. The divergence times of these clades are not significantly later than the timing of Miocene cooling and drying, and therefore can not reject Savage's hypothesis. Some other aspects of biogeography of Bombina also are discussed. The Korean Peninsula and the Shandong Peninsula might have supplied distinct southern refugia for B. orientalis during the Pleistocene glacial maxima. In the Indo-Malaya clade, the uplift of the Tibetan Plateau might have promoted the split between B. maxima and the other species.
    Matched MeSH terms: Sequence Analysis, DNA
  16. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, et al.
    Epigenomics, 2016 May;8(5):599-618.
    PMID: 26864933 DOI: 10.2217/epi-2016-0001
    AIM: Epigenetic changes may occur in response to environmental stressors, and an altered epigenome pattern may represent a stable signature of environmental exposure.

    MATERIALS & METHODS: Here, we examined the potential of DNA methylation changes in 910 prediagnostic peripheral blood samples as a marker of exposure to tobacco smoke in a large multinational cohort.

    RESULTS: We identified 748 CpG sites that were differentially methylated between smokers and nonsmokers, among which we identified novel regionally clustered CpGs associated with active smoking. Importantly, we found a marked reversibility of methylation changes after smoking cessation, although specific genes remained differentially methylated up to 22 years after cessation.

    CONCLUSION: Our study has comprehensively cataloged the smoking-associated DNA methylation alterations and showed that these alterations are reversible after smoking cessation.

    Matched MeSH terms: Sequence Analysis, DNA
  17. Khan FA, Phillips CD, Baker RJ
    Syst Biol, 2014 Jan 1;63(1):96-110.
    PMID: 24149076 DOI: 10.1093/sysbio/syt062
    Phylogenetic comparisons of the different mammalian genetic transmission elements (mtDNA, X-, Y-, and autosomal DNA) is a powerful approach for understanding the process of speciation in nature. Through such comparisons the unique inheritance pathways of each genetic element and gender-biased processes can link genomic structure to the evolutionary process, especially among lineages which have recently diversified, in which genetic isolation may be incomplete. Bulldog bats of the genus Noctilio are an exemplar lineage, being a young clade, widely distributed, and exhibiting unique feeding ecologies. In addition, currently recognized species are paraphyletic with respect to the mtDNA gene tree and contain morphologically identifiable clades that exhibit mtDNA divergences as great as among many species. To test taxonomic hypotheses and understand the contribution of hybridization to the extant distribution of genetic diversity in Noctilio, we used phylogenetic, coalescent stochastic modeling, and divergence time estimates using sequence data from cytochrome-b, cytochrome c oxidase-I, zinc finger Y, and zinc finger X, as well as evolutionary reconstructions based on amplified fragment length polymorphisms (AFLPs) data. No evidence of ongoing hybridization between the two currently recognized species was identified. However, signatures of an ancient mtDNA capture were recovered in which an mtDNA lineage of one species was captured early in the noctilionid radiation. Among subspecific mtDNA clades, which were generally coincident with morphology and statistically definable as species, signatures of ongoing hybridization were observed in sex chromosome sequences and AFLP. Divergence dating of genetic elements corroborates the diversification of extant Noctilio beginning about 3 Ma, with ongoing hybridization between mitochondrial lineages separated by 2.5 myr. The timeframe of species' divergence within Noctilio supports the hypothesis that shifts in the dietary strategies of gleaning insects (N. albiventris) or fish (N. leporinus) are among the most rapid instances of dietary evolution observed in mammals. This study illustrates the complex evolutionary dynamics shaping gene pools in nature, how comparisons of genetic elements can serve for understanding species boundaries, and the complex considerations for accurate taxonomic assignment.
    Matched MeSH terms: Sequence Analysis, DNA
  18. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

    Matched MeSH terms: Sequence Analysis, DNA
  19. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Sequence Analysis, DNA
  20. Qin J, Yang ZL
    Mycologia, 2016 Jan-Feb;108(1):215-26.
    PMID: 26553778 DOI: 10.3852/15-166
    Three new and one previously described species of Physalacria (Physalacriaceae, Agaricales) are reported from China. Specimens of two additional species described from Malaysia and North America were studied for comparison. Placements of these species were corroborated based on morphological observations and molecular evidence from partial sequences of the nuc rDNA internal transcribed spacer regions (ITS) and the 28S D1-D3 region, and genes for translation elongation factor 1-α (tef1α) and the second largest subunit of RNA polymerase II (rpb2). These new species of Physalacria distributed in subtropical China were found on rotten wood of broadleaf trees or bamboo and possess stipitate-capitate basidiomata with four-spored basidia, clamp connections and smooth, inamyloid basidiospores. To facilitate studies of the genus in Asia, a key is provided for all Physalacria species reported from this region.
    Matched MeSH terms: Sequence Analysis, DNA
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links